Medical Coverage Policy | Aqueous Shunts and Stents for Glaucoma

EFFECTIVE DATE: 01 | 01 | 2020

POLICY LAST UPDATED: 09 | 03 | 2019

OVERVIEW

Glaucoma surgery is intended to reduce intraocular pressure (IOP) when the target IOP cannot be reached with medications. Due to complications with established surgical approaches such as trabeculectomy, a variety of shunts are being evaluated as alternative surgical treatments for patients with inadequately controlled glaucoma. Microstents are also being evaluated in patients with mild-to-moderate open-angle glaucoma currently treated with ocular hypotensive medication.

MEDICAL CRITERIA

Not applicable

PRIOR AUTHORIZATION

Not applicable

POLICY STATEMENT

BlueCHiP for Medicare and Commercial Products

Insertion of ab externo aqueous shunts approved by the U.S. Food and Drug Administration may be considered medically necessary as a method to reduce intraocular pressure in patients with glaucoma where medical therapy has failed to adequately control intraocular pressure.

Insertion of ab interno aqueous stents approved by the Food and Drug Administration as a method to reduce intraocular pressure in patients with glaucoma where medical therapy has failed to adequately control intraocular pressure, is considered medically necessary.

Implantation of 1 or 2 Food and Drug Administration-approved interno stents in conjunction with cataract surgery may be considered medically necessary in patients with mild-to-moderate open-angle glaucoma treated with ocular hypotensive medication.

BlueCHiP for Medicare

Use of an ab externo aqueous shunt for all other conditions, including in patients with glaucoma when intraocular pressure is adequately controlled by medications, is not covered as the evidence is insufficient to determine the effects of the technology on health outcomes.

Use of ab interno stents for all other indications is not covered as the evidence is insufficient to determine the effects of the technology on health outcomes.

Commercial Products

Use of an ab externo aqueous shunt for all other conditions, including in patients with glaucoma when intraocular pressure is adequately controlled by medications, is considered not medically necessary as the evidence is insufficient to determine the effects of the technology on health outcomes.

Use of ab interno stents for all other indications is not medically necessary as the evidence is insufficient to determine the effects of the technology on health outcomes.

COVERAGE

Benefits may vary between groups/contracts. Please refer to the appropriate Benefit Booklet, Evidence of Coverage, or Subscriber Agreement for applicable surgery and not covered/not medically necessary benefits/coverage.

BACKGROUND

GLAUCOMA

Glaucoma is characterized by elevated intraocular pressure (IOP), which results in visual field loss and irreversible blindness if left untreated. In the primary (conventional) outflow pathway from the eye, aqueous humor passes through the trabecular meshwork, enters a space lined with endothelial cells (Schlemm canal), drains into collector channels, and then into the aqueous veins. Increases in resistance in the trabecular meshwork and/or the inner wall of the Schlemm canal can disrupt the balance of aqueous humor inflow and outflow, resulting in an increase in IOP and glaucoma risk.

TREATMENT

Ocular Medication

First-line treatment typically involves pharmacologic therapy. Topical medications either increase aqueous outflow (prostaglandins, alpha-adrenergic agonists, cholinergic agonists, Rho kinase inhibitors) or decrease aqueous production (alpha-adrenergic agonists, beta blockers, carbonic anhydrase inhibitors). Pharmacologic therapy may involve multiple medications, have potential side effects, and may be inconvenient for older adults or incapacitated patients.

Surgical intervention may be indicated in patients with glaucoma when the target IOP cannot be reached pharmacologically. Surgical procedures for glaucoma aim to reduce IOP from impaired aqueous humor drainage in the trabecular meshwork and/or Schlemm canal. Trabeculectomy (guarded filtration surgery) is the most established surgical procedure for glaucoma, which involves dissecting the conjunctiva, creating a scleral flap and scleral ostomy then suturing down the flap and closing the conjunctiva, allowing aqueous humor to directly enter the subconjunctival space. This procedure creates a subconjunctival reservoir, which can effectively reduce IOP, but commonly results in filtering "blebs" on the eye, and is associated with numerous complications (eg, hemorrhage, scarring, hypotony, infection, leaks, bleb-related endophthalmitis and long-term failure.

Insertion of shunts from outside the eye (ab externo) is another surgical option to lower IOP. Examples of ab externo devices cleared by the U.S. Food and Drug Administration (FDA) include the Ahmed, Baerveldt, Molteno, and EX-PRESSmini-shunt, which shunt aqueous humor between the anterior chamber and the suprachoroidal space. These devices differ by explant surface areas, shape, plate thickness, presence or absence of a valve, and details of surgical installation. Generally, the risk of hypotony (low pressure) is reduced with aqueous shunts compared with trabeculectomy, but IOP outcomes are worse than after standard guarded filtration surgery. Complications of anterior chamber shunts include corneal endothelial failure and erosion of the overlying conjunctiva. The risk of postoperative infection is lower with shunts than with trabeculectomy, and failure rates are similar (»10% of devices fail annually). The primary indication for aqueous shunts is for failed medical or surgical therapy, although some ophthalmologists have advocated their use as a primary surgical intervention, particularly for selected conditions such as congenital glaucoma, trauma, chemical burn, or pemphigoid.

Minimally Invasive Glaucoma Surgeries (MIGS)

MIGS are alternative, less invasive techniques that are being developed and evaluated. MIGS, which use microscopic-sized equipment and smaller incisions, involves less surgical manipulation of the sclera and the conjunctiva compared with other surgical techniques. There are several categories of MIGS: miniaturized trabeculectomy, trabecular bypass, milder laser photocoagulation, and totally internal or suprachoroidal stents (ab interno).

Examples of ab externo devices cleared by the U.S. Food and Drug Administration (FDA) include the Ahmed, Baerveldt, Molteno, and EX-PRESS mini-shunt, which shunt aqueous humor between the anterior chamber and the suprachoroidal space. These devices differ by explant surface areas, shape, plate thickness, presence or absence of a valve, and details of surgical installation. Generally, the risk of hypotony (low pressure) is reduced with aqueous shunts compared with trabeculectomy, but IOP outcomes are worse than after standard guarded filtration surgery. Complications of anterior chamber shunts include corneal endothelial failure and erosion of the overlying conjunctiva. The risk of postoperative infection is lower with shunts than with trabeculectomy, and failure rates are similar (approximately 10% of devices fail annually). The primary indication for aqueous shunts is for failed medical or surgical therapy, although some ophthalmologists have advocated their use as a primary surgical intervention, particularly for selected conditions such as congenital glaucoma, trauma, chemical burn, or pemphigoid.

Examples of ab interno devices either approved or given marketing clearance by FDA include the iStent, which is a 1-mm long stent inserted into the end of the Schlemm canal through the cornea and anterior chamber; the CyPass suprachoroidal stent; and XEN gelatin stent.

Because aqueous humor outflow is pressure-dependent, the pressure in the reservoir and venous system is critical for reaching the target IOP. Therefore, some devices may be unable to reduce IOP below the pressure of the distal outflow system used (e.g., <15 mm Hg) and are not indicated for patients for whom very low IOP is desired (e.g., those with advanced glaucoma). It has been proposed that stents such as the iStent, CyPass, and Hydrus Microstent may be useful in patients with early-stage glaucoma to reduce the burden of medications and problems with compliance. One area of investigation is patients with glaucoma who require cataract surgery. An advantage of ab interno stents is that they may be inserted into the same incision and at the same time as cataract surgery. Also, most devices do not preclude subsequent trabeculectomy if needed. It may also be possible to insert more than 1 stent to achieve the desired IOP. Therefore, health outcomes of interest are the IOP achieved, reduction in medications, ability to convert to trabeculectomy, complications, and durability of the device.

For individuals with indications for glaucoma treatment other than cataract surgery or refractory OAG who receive aqueous shunts or microstents, the evidence includes an RCT and an observational study. The relevant outcomes are a change in disease status, functional outcomes, medication use, and treatment-related morbidity. Several RCTs have evaluated the use of multiple microstents, but comparators differed. One RCT compared a single microstent with multiple microstents. This trial reported no difference in the primary outcome (percentage of patients with $^320\%$ reduction in IOP); secondary outcomes favored the multiple microstent groups. An observational study described implantation of two or three stents, at the discretion of the operating surgeon. The evidence is insufficient to determine the effects of the technology on health outcomes.

CODING

BlueCHiP for Medicare and Commercial Products

The following codes are covered only when used for a covered indication:

- 66183 Insertion of anterior segment aqueous drainage device, without extraocular reservoir; external approach
- **0191T** Insertion of anterior segment aqueous drainage device, without extraocular reservoir; internal approach, into the trabecular meshwork; initial insertion
- **0253T** Insertion of anterior segment aqueous drainage device, without extraocular reservoir; internal approach, into the suprachorodial space
- **0376T** Insertion of anterior segment aqueous drainage device, without extraocular reservoir; internal approach, into the trabecular meshwork; each additional device insertion (List separately in addition to code for primary procedure)
- **0449T** Insertion of aqueous drainage device, without extraocular reservoir, internal approach, into the subconjunctival space; initial device

- **0450T** Insertion of aqueous drainage device, without extraocular reservoir, internal approach, into the subconjunctival space; each additional device (List separately in addition to code for primary procedure)
- **0474T** Insertion of anterior segment aqueous drainage device, with creation of intraocular reservoir, internal approach, into the supraciliary space

ICD-10 Diagnosis Codes that may support medical necessity: H40.10X0 – H42

RELATED POLICIES

Viscocanalostomy and Canaloplasty

PUBLISHED

Provider Update, November 2019 Provider Update, November/December 2018 Provider Update, November 2017 Provider Update, July 2016 Provider Update, December 2015

REFERENCES

- 1. Glaukos Corporation (GC). Glaukos Corporation iStent inject Trabecular Micro-Bypass System. 2018; https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170043c.pdf. Accessed January 24, 2019.
- Food and Drug Administration (FDA). Alcon Announces Voluntary Global Market Withdrawal of CyPass Micro-Stent for Surgical Glaucoma. 2018; https://www.fda.gov/Safety/Recalls/ucm619109.htm. Accessed January 24, 2019.
- 3. Minckler DS, Vedula SS, Li TJ, et al. Aqueous shunts for glaucoma. Cochrane Database Syst Rev. Apr 19 2006(2):CD004918. PMID 16625616.
- 4. Minckler DS, Francis BA, Hodapp EA, et al. Aqueous shunts in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology. Jun 2008;115(6):1089-1098. PMID 18519069.
- 5. Boland MV, Ervin AM, Friedman D, et al. Treatment for Glaucoma: Comparative Effectiveness. Comparative Effectiveness Review No. 60 (AHRQ Publication No. 12-EHC038-EF). Rockville, MD: Agency for Healthcare Research and Quality; 2012.
- 6. Gedde SJ, Schiffman JC, Feuer WJ, et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. May 2012;153(5):789-803 e782. PMID 22245458.
- 7. Kotecha A, Feuer WJ, Barton K, et al. Quality of Life in the Tube Versus Trabeculectomy Study. Am J Ophthalmol. Apr 2017;176:228-235. PMID 28161049.
- 8. Wang X, Khan R, Coleman A. Device-modified trabeculectomy for glaucoma. Cochrane Database Syst Rev. Dec 1 2015;12(12):CD010472. PMID 26625212.
- 9. de Jong LA. The Ex-PRÈSS glaucoma shunt versus trabeculectomy in open-angle glaucoma: a prospective randomized study. Adv Ther. Mar 2009;26(3):336-345. PMID 19337705.
- 10. de Jong L, Lafuma A, Aguade AS, et al. Five-year extension of a clinical trial comparing the EX-PRESS glaucoma filtration device and trabeculectomy in primary open-angle glaucoma. Clin Ophthalmol. May 2011;5:527-533. PMID 21607021.
- 11. Netland PA, Sarkisian SR, Jr., Moster MR, et al. Randomized, prospective, comparative trial of EX-PRESS glaucoma filtration device versus trabeculectomy (XVT study). Am J Ophthalmol. Feb 2014;157(2):433-440 e433. PMID 24210765.
- 12. Wagschal LD, Trope GE, Jinapriya D, et al. Prospective randomized study comparing Ex-PRESS to trabeculectomy: 1-year results. J Glaucoma. Oct-Nov 2015;24(8):624-629. PMID 24247999.
- 13. Gonzalez-Rodriguez JM, Trope GE, Drori-Wagschal L, et al. Comparison of trabeculectomy versus Ex-PRESS: 3-year follow-up. Br J Ophthalmol. Sep 2016;100(9):1269-1273. PMID 26674779.

- 14. Dib Bustros Y, Fechtner R, A SK. Outcomes of Ex-PRESS and trabeculectomy in a glaucoma population of African origin: one year results. J Curr Glaucoma Pract. May-Aug 2017;11(2):42-47. PMID 28924337.
- 15. Omatsu S, Hirooka K, Nitta E, Ukegawa K. Changes in corneal endothelial cells after trabeculectomy and EX-PRESS shunt: 2-year follow-up. BMC Ophthalmol. Sep 10 2018;18(1):243. PMID 30200927.
- 16. Budenz DL, Barton K, Gedde SJ, et al. Five-year treatment outcomes in the Ahmed Baerveldt comparison study. Ophthalmology. Feb 2015;122(2):308-316. PMID 25439606.
- 17. Budenz DL, Feuer WJ, Barton K, et al. Postoperative complications in the Ahmed Baerveldt comparison study during five years of follow-up. Am J Ophthalmol. Mar 2016;163:75-82 e73. PMID 26596400.
- 18. Christakis PG, Kalenak JW, Tsai JC, et al. The Ahmed versus Baerveldt study: five-year treatment outcomes. Ophthalmology. Oct 2016;123(10):2093-2102. PMID 27544023.
- 19. Christakis PG, Zhang D, Budenz DL, et al. Five-year pooled data analysis of the Ahmed Baerveldt comparison study and the Ahmed versus Baerveldt Study. Am J Ophthalmol. Apr 2017;176:118-126. PMID 28104418.
- 20. Bo W, Dai D, Sun F. Observation of curative effects of Ex-PRESS and AGV implantation in the treatment of refractory glaucoma. Exp Ther Med. May 2018;15(5):4419-4425. PMID 29849778.
- 21. Schlenker MB, Gulamhusein H, Conrad-Hengerer I, et al. Efficacy, safety, and risk factors for failure of standalone ab interno gelatin microstent implantation versus standalone trabeculectomy. Ophthalmology. Nov 2017;124(11):1579-1588. PMID 28601250.
- 22. Grover DS, Flynn WJ, Bashford KP, et al. Performance and safety of a new ab interno gelatin stent in refractory glaucoma at 12 months. Am J Ophthalmol. Nov 2017;183:25-36. PMID 28784554.
- 23. Hengerer FH, Kohnen T, Mueller M, et al. Ab interno gel implant for the treatment of glaucoma patients with or without prior glaucoma surgery: 1-year results. J Glaucoma. Dec 2017;26(12):1130-1136. PMID 29035911.
- 24. Galal A, Bilgic A, Eltanamly R, et al. XEN glaucoma implant with mitomycin C 1-year follow-up: result and complications. J Ophthalmol. Mar 1 2017;2017:5457246. PMID 28348884.
- 25. Ozal SA, Kaplaner O, Basar BB, et al. An innovation in glaucoma surgery: XEN45 gel stent implantation. Arq Bras Oftalmol. Nov-Dec 2017;80(6):382-385. PMID 29267575.
- 26. Tan SZ, Walkden A, Au L. One-year result of XEN45 implant for glaucoma: efficacy, safety, and postoperative management. Eye (Lond). Feb 2018;32(2):324-332. PMID 28862254.

CLICK THE ENVELOPE ICON BELOW TO SUBMIT COMMENTS

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice. Blue Cross & Blue Shield of Rhode Island is an independent licensee of the Blue Cross and Blue Shield Association.

