Medical Coverage Policy | Auditory Brainstem Implant

EFFECTIVE DATE: 03 | 02 | 2010

POLICY LAST UPDATED: 03 | 05 | 2020

OVERVIEW

This policy documents the coverage determination for Auditory Brain Stem Implant. An auditory brainstem implant (ABI) is designed to restore some hearing in people with neurofibromatosis type 2 (NF2) who are rendered deaf by bilateral removal of neurofibromas involving the auditory nerve. ABIs have also been studied to restore hearing for other non-neurofibromatosis indications.

MEDICAL CRITERIA

Not applicable

PRIOR AUTHORIZATION

Not applicable

POLICY STATEMENT

BlueCHiP for Medicare

Unilateral use of an auditory brainstem implant (using surface electrodes on the cochlear nuclei) is covered in patients with neurofibromatosis type 2 (ICD-10 diagnosis code Q85.02), who are 12 years of age or older, and who are rendered deaf due to bilateral resection of neurofibromas of the auditory nerve.

An auditory brainstem implant is not covered for all other conditions including non-neurofibromatosis type 2 indications as the evidence is insufficient to determine the effects of the technology on health outcomes.

Bilateral use of an auditory brainstem implant is not covered as the evidence is insufficient to determine the effects of the technology on health outcomes.

Penetrating electrode auditory brainstem implant (PABI) is not covered as the evidence is insufficient to determine the effects of the technology on health outcomes.

Commercial Products

Unilateral use of an auditory brainstem implant (using surface electrodes on the cochlear nuclei) is considered medically necessary in patients with neurofibromatosis type 2 (ICD-10 diagnosis code Q85.02), who are 12 years of age or older, and who are rendered deaf due to bilateral resection of neurofibromas of the auditory nerve.

An auditory brainstem implant is considered not medically necessary for all other conditions including non-neurofibromatosis type 2 indications as the evidence is insufficient to determine the effects of the technology on health outcomes.

Bilateral use of an auditory brainstem implant is considered not medically necessary as the evidence is insufficient to determine the effects of the technology on health outcomes.

Penetrating electrode auditory brainstem implant (PABI) is considered not medically necessary as the evidence is insufficient to determine the effects of the technology on health outcomes.

COVERAGE

Benefits may vary between groups/contracts. Please refer to the appropriate Benefit Booklet, Evidence of Coverage, or Subscriber Agreement for applicable not medically necessary/not covered benefits/coverage.

BACKGROUND

The auditory brainstem implant (ABI) is a device designed to restore some hearing in people with neurofibromatosis type 2 who are rendered deaf by bilateral removal of the characteristic neurofibromas involving the auditory nerve. The ABI consists of an externally worn speech processor that provides auditory information by electrical signal that is transferred to a receiver/stimulator implanted in the temporal bone. The receiver stimulator is, in turn, attached to an electrode array implanted on the surface of the cochlear nerve in the brainstem, thus bypassing the inner ear and auditory nerve. The electrode stimulates multiple sites on the cochlear nucleus, which is then processed normally by the brain. To place the electrode array on the surface of the cochlear nucleus, the surgeon must be able to visualize specific anatomic landmarks. Because large neurofibromas compress the brainstem and distort the underlying anatomy, it can be difficult or impossible for the surgeon to correctly place the electrode array. For this reason, patients with large, long-standing tumors may not benefit from the device.

ABIs are also being studied to determine whether they can restore hearing for other nonneurofibromatosis causes of hearing impairment in adults and children, including absence of or trauma to the cochlea or auditory nerve. It is estimated that 1.7 per 100,000 children are affected by bilateral cochlea or cochlear nerve aplasia and 2.6 per 100,000 children are affected by bilateral cochlea or cochlear nerve hypoplasia.

REGULATORY STATUS

In 2000, the Nucleus® 24 Auditory Brainstem Implant System (Cochlear Corp.) was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process. The speech processor and receiver are similar to the devices used in cochlear implants; the electrode array placed on the brainstem is the novel component of the device. The device is indicated for individuals 12 years of age or older who have been diagnosed with neurofibromatosis type 2. The Nucleus® 24 Auditory Brainstem Implant System labeling states: "The efficacy of bilateral implantation with the ABI [auditory brainstem implant] has not been studied." The Nucleus® 24 is now obsolete.

In June 2016, the Nucleus ABI541 Auditory Brainstem Implant (Cochlear Corp.) was approved by FDA through a supplement to the premarket approval for the Nucleus® 24. The new implant is indicated for individuals 12 years of age or older who have been diagnosed with neurofibromatosis type 2.

For individuals who are deaf due to bilateral resection of neurofibromas of the auditory nerve who receive an auditory brainstem implant (ABI), the evidence includes a large prospective case series. Relevant outcomes are functional outcomes, quality of life, and treatment-related morbidity. The U.S. Food and Drug Administration (FDA) approval of the Nucleus 24 device in 2000 was based on a prospective case series of 90 patients 12 years of age or older, of whom 60 had the implant for at least 3 months. From this group, 95% had a significant improvement in lip reading or improvement on sound-alone tests. While use of an ABI is associated with a very modest improvement in hearing, this level of improvement is considered significant for those patients who have no other treatment options. Based on these results, ABIs are considered appropriate for the patient population included in the trial (ie, age ≥12 years with neurofibromatosis type 2 [NF2] and deafness following tumor removal). The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are deaf due to nontumor etiologies who receive an ABI, the evidence includes case series and systematic reviews of case series. Relevant outcomes are functional outcomes, quality of life, and treatment-related morbidity. In general, ABIs have not demonstrated hearing benefits over cochlear implants for many non-NF2 conditions. However, ABIs hold promise for select patients when the cochlea or cochlear nerve is absent. Many recent and ongoing ABI studies are being conducted in children. For children, hearing

is critical for language development, and this device has potential to substantially improve health outcomes. The most common nontumor conditions in children are cochlear aplasia and cochlear nerve aplasia. There are questions about the durability of the now obsolete Nucleus 24 in active young children. Evaluation is currently ongoing with the recently available Nucleus ABI541to determine its efficacy and durability in children. In addition, ABI studies have shown inferior outcomes in children with other disabilities. Thus, further study is also needed to define populations that would benefit from these devices. The evidence is insufficient to determine the effects of the technology on health outcomes

CODING

BlueCHiP for Medicare and Commercial Products

The following codes are covered for patients 12 years of age older with a diagnosis of Neurofibromatosis type 2:

CPT Code:

92640 Diagnosis analysis with programming of auditory brainstem implant, per hour

HCPCS Code:

\$2235 Implantation of auditory brainstem implant

ICD-10 Diagnosis Code:

Q85.02 Neurofibromatosis, type 2

RELATED POLICIES

Not applicable

PUBLISHED

Provider Update, May 2020

Provider Update, June 2019

Provider Update, Sep 2018

Provider Update, June 2017

Provider Update, Sep 2016

Provider Update, June 2015

Provider Update, Oct 2014

Provider Update, May 2013

REFERENCES:

- 1. Kaplan AB, Kozin ED, Puram SV, et al. Auditory brainstem implant candidacy in the United States in children 0-17 years old. *Int J Pediatr Otorhinolaryngol.* Mar 2015;79(3):310-315. PMID 25577282
- 2. Food and Drug Administration. Premarket Approval (PMA). Nucleus ABI541 Auditory Brainstem Implant. 2016. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P000015S012. Accessed December 22, 2019
- 3. Ebinger K, Otto S, Arcaroli J, et al. Multichannel auditory brainstem implant: US clinical trial results. *J Laryngol Otol Suppl.* Feb 2000(27):50-53. PMID 11211440
- 4. Matthies C, Brill S, Kaga K, et al. Auditory brainstem implantation improves speech recognition in neurofibromatosis type II patients. ORL J Otorhinolaryngol Relat Spec. Sep 2013;75(5):282-295. PMID 24042846
- 5. Sanna M, Di Lella F, Guida M, et al. Auditory brainstem implants in NF2 patients: results and review of the literature. *Otol Neurotol.* Feb 2012;33(2):154-164. PMID 22246383
- 6. Otto SR, Shannon RV, Wilkinson EP, et al. Audiologic outcomes with the penetrating electrode auditory brainstem implant. *Otol Neurotol.* Dec 2008;29(8):1147-1154. PMID 18931643
- 7. Merkus P, Di Lella F, Di Trapani G, et al. Indications and contraindications of auditory brainstem implants: systematic review and illustrative cases. *Eur Arch Otorhinolaryngol*. Jan 2014;271(1):3-13. PMID 23404468
- 8. Medina M, Di Lella F, Di Trapani G, et al. Cochlear implantation versus auditory brainstem implantation in

bilateral total deafness after head trauma: personal experience and review of the literature. *Otol Neurotol.* Feb 2014;35(2):260-270. PMID 24448286

- 9. Noij KS, Kozin ED, Sethi R, et al. Systematic review of nontumor pediatric auditory brainstem implant outcomes. *Otolaryngol Head Neck Surg.* Nov 2015;153(5):739-750. PMID 26227469
- 10. Colletti L, Wilkinson EP, Colletti V. Auditory brainstem implantation after unsuccessful cochlear implantation of children with clinical diagnosis of cochlear nerve deficiency. *Ann Otol Rhinol Laryngol.* Oct 2013;122(10):605-612. PMID 24294682
- 11. Sennaroglu L, Sennaroglu G, Yucel E, et al. Long-term results of ABI in children with severe inner ear malformations. *Otol Neurotol.* Aug 2016;37(7):865-872. PMID 27273392
- 12. Sennaroglu L, Ziyal I, Atas A, et al. Preliminary results of auditory brainstem implantation in prelingually deaf children with inner ear malformations including severe stenosis of the cochlear aperture and aplasia of the cochlear nerve. *Otol Neurotol.* Sep 2009;30(6):708-715. PMID 19704357
- 13. Puram SV, Barber SR, Kozin ED, et al. Outcomes following pediatric auditory brainstem implant surgery: early experiences in a North American center. *Otolaryngol Head Neck Surg.* Jul 2016;155(1):133-138. PMID 27095049
- 14. Colletti V, Carner M, Miorelli V, et al. Auditory brainstem implant (ABI): new frontiers in adults and children. *Otolaryngol Head Neck Surg.* Jul 2005;133(1):126-138. PMID 16025066
- 15. Colletti V. Auditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implants. *Adv Otorhinolaryngol.* Aug 2006;64:167-185. PMID 16891842
- 16. Colletti L. Beneficial auditory and cognitive effects of auditory brainstem implantation in children. *Acta Otolaryngol.* Sep 2007;127(9):943-946. PMID 17712673
- 17. Colletti V, Shannon RV, Carner M, et al. Complications in auditory brainstem implant surgery in adults and children. *Otol Neurotol.* Jun 2010;31(4):558-564. PMID 20393378
- 18. National Institute Health and Care Excellence (NICE). Auditory brain stem implants [IPG108]. 2005 https://www.nice.org.uk/guidance/ipg108. Accessed January 19, 2018.
- 19. Centers for Medicare & Medicaid Services. Medicare Policy Benefit Manual. Chapter 16 General Exclusions from Coverage. 2014; http://www.cms.gov/manuals/Downloads/bp102c16.pdf. Accessed January 19, 2020
- 20. Food and Drug Administration. Nucleus 24 Auditory Brainstem Implant System. FDA Summary of Safety and Effectiveness. 2000; https://www.accessdata.fda.gov/cdrh_docs/pdf/P000015B.pdf. Accessed February 4, 2020.

CLICK THE ENVELOPE ICON BELOW TO SUBMIT COMMENTS

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice. Blue Cross & Blue Shield of Rhode Island is an independent licensee of the Blue Cross and Blue Shield Association.

