Medical Coverage Policy | Disposable Negative Pressure Wound Therapy

EFFECTIVE DATE: 07|01|2017 **POLICY LAST UPDATED:** 02|25|2021

OVERVIEW

Negative pressure wound therapy (NPWT) involves the use of negative pressure or suction device to aspirate and remove fluids, debris, and infectious materials from the wound bed to promote the formation of granulation tissue and wound healing.

MEDICAL CRITERIA

Not applicable

PRIOR AUTHORIZATION

Medicare Advantage Plans and Commercial Products Not applicable

POLICY STATEMENT

Medicare Advantage Plans

The use of (powered or nonpowered) disposable single-use NPWT system devices for the treatment of acute or chronic wounds including but not limited to diabetic, venous, surgical, and traumatic wounds, is not covered, as they do not meet the durable medical equipment (DME) benefit durability requirement.

Commercial Products

The use of (powered or nonpowered) disposable single-use NPWT system devices for the treatment of acute or chronic wounds including but not limited to diabetic, venous, surgical, and traumatic wounds, is considered not medically necessary, as the evidence is insufficient to determine the effects of the technology on health outcomes.

COVERAGE

Benefits may vary between groups and contracts. Please refer to the appropriate Benefit Booklet, Evidence of Coverage or Subscriber Agreement for applicable not medically necessary/not covered benefits/coverage.

BACKGROUND

The management and treatment of chronic wounds, including decubitus ulcers, is challenging. Most chronic wounds will heal only if the underlying cause (ie, venous stasis, pressure, infection) is addressed. Also, cleaning the wound to remove nonviable tissue, microorganisms, and foreign bodies is essential to create optimal conditions for either re-epithelialization (ie, healing by secondary intention) or preparation for wound closure with skin grafts or flaps (ie, healing by primary intention). Therefore, debridement, irrigation, whirlpool treatments, and wet-to-dry dressings are common components of chronic wound care.

Negative pressure wound therapy (NPWT) involves the use of a negative pressure therapy or suction device to aspirate and remove fluids, debris, and infectious materials from the wound bed to promote the formation of granulation tissue. The devices may also be used as an adjunct to surgical therapy or as an alternative to surgery in a debilitated patient. Although the exact mechanism has not been elucidated, it is hypothesized that negative pressure contributes to wound healing by removing excess interstitial fluid, increasing the vascularity of the wound, reducing edema, and/or creating beneficial mechanical forces that lead to cell growth and expansion.

Single-use negative pressure therapy or suction devices cleared by the U.S. Food and Drug Administration (FDA) for treating chronic wounds include but are not limited to: PICO Single Use Negative Pressure Wound Therapy System (Smith & Nephew), SNaP® Wound Care System and the PrevenaTM Incision Management System (KCI) which is designed specifically for closed surgical incisions. PICO is a portable single-use NPWT system that comes with 2 sterile dressings and has a lifespan of 7 to 14 days.

A nonpowered (mechanical) NPWT system has also been developed; the Smart Negative Pressure Wound Care System is portable and lightweight (3 oz) and can be worn underneath clothing. This system consists of a cartridge, dressing, and strap; the cartridge acts as the negative pressure source. The system is reported to generate negative pressure levels similar to other NPWT systems. This system is fully disposable.

A nonpowered NPWT device, the SNaP® Wound Care System (Spiracur, acquired by Acelity in 2015), is a class II device requiring notification to market but not having the FDA premarket approval. In 2009, it was cleared for marketing by the FDA through the 510(k) pathway (K081406) and is designed to remove small amounts of exudate from chronic, traumatic, dehisced, acute, or subacute wounds and diabetic and pressure ulcers.

For individuals who have diabetic lower-extremity ulcers or amputation wounds who receive portable, singleuse outpatient NPWT, the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, QOL, and treatment-related morbidity. A 2019 RCT compared the PICO device with standard NPWT. In this study, the PICO device demonstrated noninferiority for wound area reduction. A statistically significant benefit in complete wound closure was noted for patients with DFUs, but was not duplicated in the per protocol population due to a high number of exclusions. One study of the Smart Negative Pressure nonpowered Wound Care System (SNaP) showed noninferiority to a V.A.C. device for wound size reduction. No significant difference in complete wound closure was reported. Interpretation of this study is limited by a high loss to follow-up. Well-designed comparative studies with larger numbers of patients powered to detect differences in complete wound closure are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have lower-extremity ulcers due to venous insufficiency who receive portable, single-use outpatient NPWT, the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, QOL, and treatment-related morbidity. A 2019 RCT compared the PICO device with standard NPWT. In this study, the PICO device demonstrated noninferiority for wound area reduction. No significant benefit in complete wound closure was found in patients with venous ulcers. One study of the SNaP System showed noninferiority to a V.A.C. device for wound size reduction. A subgroup analysis of this study found a significant difference in complete wound closure for patients with venous ulcers. However, interpretation of this study is limited by a high loss to follow-up and a lack of a control group treated with standard dressings. Well-designed comparative studies with larger numbers of patients powered to detect differences in complete wound closure are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have traumatic or surgical wounds who receive portable, single-use outpatient NPWT, the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, QOL, and treatment-related morbidity. The PICO device was studied in an adequately powered but unblinded RCT of combined in- and outpatient use after total joint arthroplasty. The evidence base for the Prevena System is not sufficiently robust for conclusions on efficacy to be drawn. Well-designed comparative studies with larger numbers of patients treated in an outpatient setting are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

CODING

The following code is not medically necessary for Commercial Products and is not covered for Medicare Advantage Plans, as it does not meet the DME benefit durability requirement: A9272 Wound suction, disposable, includes dressing, all accessories and components, any type, each The following codes are not medically necessary for Commercial Products and are covered for Medicare Advantage Plans.

- **97607** Negative pressure wound therapy, (eg, vacuum assisted drainage collection), utilizing disposable, nondurable medical equipment including provision of exudate management collection system, topical application(s), wound assessment, and instructions for ongoing care, per session; total wound(s) surface area less than or equal to 50 square centimeters
- **97608** Negative pressure wound therapy, (eg, vacuum assisted drainage collection), utilizing disposable, nondurable medical equipment including provision of exudate management collection system, topical application(s), wound assessment, and instructions for ongoing care, per session; total wound(s) surface area greater than 50 square centimeters

RELATED POLICIES

Prior Authorization via Web-Based Tool for Durable Medical Equipment (DME)

PUBLISHED

Provider Update, May 2021 Provider Update, April 2020 Provider Update, July 2019 Provider Update, August 2018 Provider Update, May 2017

REFERENCES

- U.S. Food and Drug Administration. UPDATE on Serious Complications Associated with Negative Pressure Wound Therapy Systems: FDA Safety Communication. 2011 Feb; http://wayback.archiveit.org/7993/20170722215801/https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm 244211.htm. Accessed December 21, 2020.
- 2. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Vacuum-assisted closure in the treatment of chronic wounds. TEC Assessments. 2000;Volume 15:Tab 23.
- Food and Drug Administration (FDA). Guidance for Industry. Chronic Cutaneous Ulcer and Burn Wounds - Developing Products for Treatment. June 2006; https://www.fda.gov/media/71278/download. Accessed December 21, 2020.
- Rhee SM, Valle MF, Wilson LM, et al. Negative Pressure Wound Therapy Technologies For Chronic Wound Care in the Home Setting. Evidence Report/Technology Assessment (Contract No. 290-201-200007-I) Rockville, MD: Agency for Healthcare Research and Quality; 2014.
- Rhee SM, Valle MF, Wilson LM, et al. Negative pressure wound therapy technologies for chronic wound care in the home setting: A systematic review. Wound Repair Regen. Jul-Aug 2015; 23(4): 506-17. PMID 25845268
- 6. Sullivan N, Snyder DL, Tipton K, et al. Technology assessment: Negative pressure wound therapy devices (Contract No. 290-2007-10063). Rockville, MD: Agency for Healthcare Research and Quality; 2009.
- Norman G, Goh EL, Dumville JC, et al. Negative pressure wound therapy for surgical wounds healing by primary closure. Cochrane Database Syst Rev. Jun 15 2020; 6: CD009261. PMID 32542647
- 8. Li HZ, Xu XH, Wang DW, et al. Negative pressure wound therapy for surgical site infections: a systematic review and meta-analysis of randomized controlled trials. Clin Microbiol Infect. Nov 2019; 25(11): 1328-1338. PMID 31220604
- Dumville JC, Hinchliffe RJ, Cullum N, et al. Negative pressure wound therapy for treating foot wounds in people with diabetes mellitus. Cochrane Database Syst Rev. Oct 17 2013; (10): CD010318. PMID 24132761
- 10. Iheozor-Ejiofor Z, Newton K, Dumville JC, et al. Negative pressure wound therapy for open traumatic wounds. Cochrane Database Syst Rev. Jul 03 2018; 7: CD012522. PMID 29969521

- 11. Wynn M, Freeman S. The efficacy of negative pressure wound therapy for diabetic foot ulcers: A systematised review. J Tissue Viability. Aug 2019; 28(3): 152-160. PMID 31056407
- 12. Blume PA, Walters J, Payne W, et al. Comparison of negative pressure wound therapy using vacuumassisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial. Diabetes Care. Apr 2008; 31(4): 631-6. PMID 18162494
- Borys S, Hohendorff J, Koblik T, et al. Negative-pressure wound therapy for management of chronic neuropathic noninfected diabetic foot ulcerations - short-term efficacy and long-term outcomes. Endocrine. Dec 2018; 62(3): 611-616. PMID 30099674
- 14. Kirsner R, Dove C, Reyzelman A, et al. A prospective, randomized, controlled clinical trial on the efficacy of a single-use negative pressure wound therapy system, compared to traditional negative pressure wound therapy in the treatment of chronic ulcers of the lower extremities. Wound Repair Regen. Sep 2019; 27(5): 519-529. PMID 31087729
- 15. Armstrong DG, Marston WA, Reyzelman AM, et al. Comparison of negative pressure wound therapy with an ultraportable mechanically powered device vs. traditional electrically powered device for the treatment of chronic lower extremity ulcers: a multicenter randomized-controlled trial. Wound Repair Regen. Mar-Apr 2011; 19(2): 173-80. PMID 21362084
- Armstrong DG, Marston WA, Reyzelman AM, et al. Comparative effectiveness of mechanically and electrically powered negative pressure wound therapy devices: a multicenter randomized controlled trial. Wound Repair Regen. May-Jun 2012; 20(3): 332-41. PMID 22564228
- Lerman B, Oldenbrook L, Eichstadt SL, et al. Evaluation of chronic wound treatment with the SNaP wound care system versus modern dressing protocols. Plast Reconstr Surg. Oct 2010; 126(4): 1253-1261. PMID 20885246
- Wanner MB, Schwarzl F, Strub B, et al. Vacuum-assisted wound closure for cheaper and more comfortable healing of pressure sores: a prospective study. Scand J Plast Reconstr Surg Hand Surg. 2003; 37(1): 28-33. PMID 12625392
- 19. Dumville JC, Land L, Evans D, et al. Negative pressure wound therapy for treating leg ulcers. Cochrane Database Syst Rev. Jul 14 2015; (7): CD011354. PMID 26171910
- Vuerstaek JD, Vainas T, Wuite J, et al. State-of-the-art treatment of chronic leg ulcers: A randomized controlled trial comparing vacuum-assisted closure (V.A.C.) with modern wound dressings. J Vasc Surg. Nov 2006; 44(5): 1029-37; discussion 1038. PMID 17000077
- Marston WA, Armstrong DG, Reyzelman AM, et al. A Multicenter Randomized Controlled Trial Comparing Treatment of Venous Leg Ulcers Using Mechanically Versus Electrically Powered Negative Pressure Wound Therapy. Adv Wound Care (New Rochelle). Feb 01 2015; 4(2): 75-82. PMID 25713749
- 22. Dumville JC, Munson C, Christie J. Negative pressure wound therapy for partial-thickness burns. Cochrane Database Syst Rev. Dec 15 2014; (12): CD006215. PMID 25500895
- Bloemen MC, van der Wal MB, Verhaegen PD, et al. Clinical effectiveness of dermal substitution in burns by topical negative pressure: a multicenter randomized controlled trial. Wound Repair Regen. Nov-Dec 2012; 20(6): 797-805. PMID 23110478
- 24. Krug E, Berg L, Lee C, et al. Evidence-based recommendations for the use of Negative Pressure Wound Therapy in traumatic wounds and reconstructive surgery: steps towards an international consensus. Injury. Feb 2011; 42 Suppl 1: S1-12. PMID 21316515
- 25. Ehrl D, Heidekrueger PI, Broer PN, et al. Topical Negative Pressure Wound Therapy of Burned Hands: Functional Outcomes. J Burn Care Res. Jan 01 2018; 39(1): 121-128. PMID 28368916

----- CLICK THE ENVELOPE ICON BELOW TO SUBMIT COMMENTS

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly of Rhode Island is an independent licensee of the Blue Cross and Blue Shield Association.

