Medical Coverage Policy | Electromagnetic Navigation Bronchoscopy

EFFECTIVE DATE: 01 | 01 | 2020 **POLICY LAST UPDATED:** 08 | 24 | 2021

OVERVIEW

Electromagnetic navigation bronchoscopy (ENB) is intended to enhance standard bronchoscopy by providing a 3-dimensional roadmap of the lungs and real-time information about the position of the steerable probe during bronchoscopy. The purpose of ENB is to allow navigation to distal regions of the lungs, so that suspicious lesions can undergo biopsy and to allow for placement of fiducial markers.

MEDICAL CRITERIA

Not applicable

PRIOR AUTHORIZATION

Not applicable

POLICY STATEMENT

Medicare Advantage Plans and Commercial Products

When flexible bronchoscopy alone, or with endobronchial ultrasound, are considered inadequate to accomplish the diagnostic or interventional objective, electromagnetic navigation bronchoscopy (ENB) may be considered medically necessary to:

- establish a diagnosis of suspicious peripheral pulmonary lesion(s) or
- place fiducial markers within lung tumor(s) prior to treatment

Medicare Advantage Plans

Electromagnetic navigation bronchoscopy is not covered for use with flexible bronchoscopy for the diagnosis of mediastinal lymph nodes as well as all other uses not covered above, as the evidence is insufficient to determine the effects of the technology on health outcomes.

Commercial Products

Electromagnetic navigation bronchoscopy is not medically necessary for use with flexible bronchoscopy for the diagnosis of mediastinal lymph nodes as well as all other uses not covered above, as the evidence is insufficient to determine the effects of the technology on health outcomes.

COVERAGE

Benefits may vary between groups and contracts. Please refer to the appropriate Benefit Booklet, Evidence of Coverage or Subscriber Agreement for not covered/not medically necessary benefits/coverage.

BACKGROUND

PULMONARY NODULES

Pulmonary nodules are identified on plain chest radiographs, or chest computed tomography scans. Although most nodules are benign, some are cancerous, and early diagnosis of lung cancer is desirable because of the poor prognosis when it is diagnosed later.

Diagnosis

The method used to diagnose lung cancer depends on a number of factors, including lesion size, shape, location, as well as the clinical history and status of the patient. Peripheral lung lesions and solitary pulmonary

nodules (most often defined as asymptomatic nodules <6 mm) are more difficult to evaluate than larger, centrally located lesions. There are several options for diagnosing malignant disease, but none of the methods is ideal. Sputum cytology is the least invasive approach. Reported sensitivity rates are relatively low and vary widely across studies; sensitivity is lower for peripheral lesions. Sputum cytology, however, has a high specificity; and a positive test may obviate the need for more invasive testing. Flexible bronchoscopy, a minimally invasive procedure, is an established approach to evaluate pulmonary nodules. The sensitivity of flexible bronchoscopy for diagnosing bronchogenic carcinoma has been estimated at 88% for central lesions and 78% for peripheral lesions. For small peripheral lesions (<1.5 cm in diameter), the sensitivity may be as low as 10%. The diagnostic accuracy of transthoracic needle aspiration for solitary pulmonary nodules tends to be higher than that of bronchoscopy; the sensitivity and specificity are both approximately 94%. A disadvantage of transthoracic needle aspiration is that a pneumothorax develops in 11% to 25% of patients, and 5% to 14% require insertion of a chest tube. Positron emission tomography scans are also highly sensitive for evaluating pulmonary nodules yet may miss lesions less than 1 cm in size. A lung biopsy is the criterion standard for diagnosing pulmonary nodules but is an invasive procedure.

Advances in technology may increase the yield of established diagnostic methods. CT scanning equipment can be used to guide bronchoscopy and bronchoscopic transbronchial needle biopsy but have the disadvantage of exposing the patient and staff to radiation. Endobronchial ultrasound (EBUS) by radial probes, previously used in the perioperative staging of lung cancer, can also be used to locate and guide sampling of peripheral lesions. Endobronchial ultrasound is reported to increase the diagnostic yield of flexible bronchoscopy to at least 82%, regardless of the size and location of the lesion.

Marker Placement

Another proposed enhancement to standard bronchoscopy is electromagnetic navigation bronchoscopy. Electromagnetic navigation bronchoscopy is intended to enhance standard bronchoscopy by providing a 3-dimensional roadmap of the lungs and real-time information about the position of the steerable probe during bronchoscopy. The purpose of electromagnetic navigation bronchoscopy is to allow navigation to distal regions of the lungs. Once the navigation catheter is in place, any endoscopic tool can be inserted through the channel in the catheter to the target. This includes insertion of transbronchial forceps to biopsy the lesion. Also, the guide catheter can be used to place fiducial markers. Markers are loaded in the proximal end of the catheter with a guide wire inserted through the catheter.

For individuals who have enlarged mediastinal lymph nodes who receive ENB with flexible bronchoscopy, the evidence includes a randomized controlled trial and observational studies. The relevant outcomes are test accuracy and validity, other test performance measures, and treatment-related morbidity. There is less published literature on ENB for diagnosing mediastinal lymph nodes than for diagnosing pulmonary lesions. One randomized controlled trial identified found higher sampling and diagnostic success with ENB-guided transbronchial needle aspiration than with conventional transbronchial needle aspiration. EBUS, which has been shown to be superior to conventional transbronchial needle aspiration, was not used as the comparator. The randomized controlled trial did not report the diagnostic accuracy of ENB for identifying malignancy, and this was also not reported in uncontrolled studies. Limitations of the published evidence preclude determining the effects of the technology on net health outcome. Evidence reported through clinical input is not generally supportive of a clinically meaningful improvement in net health outcome. Mediastinal lymph nodes diagnosis was an early indication for ENB which has been largely replaced by EBUS. One could consider it in the uncommon scenario in which linear EBUS is not available and the patient is already having an ENB procedure for a peripheral nodule. The evidence is insufficient to determine the effects of the technology on health outcomes.

CODING

Medicare Advantage Plans and Commercial Products

The following codes are covered:

31626 Bronchoscopy, rigid or flexible, including fluoroscopic guidance when performed; with placement of fiducial markers, single or multiple

31627 Bronchoscopy, rigid or flexible, including fluoroscopic guidance when performed; with computer assisted, image-guided navigation (List separately in addition to code for primary procedure)

There is no specific CPT code for electromagnetic navigation bronchoscopy when used for the diagnosis of mediastinal lymph nodes; therefore, providers should report this service with an unlisted procedure code.

RELATED POLICIES

Not applicable

PUBLISHED

Provider Update, October 2021 Provider Update, November 2020 Provider Update, May 2020 Provider Update, November/December 2018 Provider Update, January 2018

REFERENCES

- 1. Rivera MP, Mehta AC. Initial diagnosis of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. Sep 2007; 132(3 Suppl): 131S-148S. PMID 17873165
- 2. Tape TG. Solitary Pulmonary Nodule. In: Black ER, et al, eds. Diagnostic strategies for common medical problems, 2nd edition. Philadelphia, PA: American College of Physicians; 1999.
- 3. Wiener RS, Wiener DC, Gould MK. Risks of Transthoracic Needle Biopsy: How High?. Clin Pulm Med. Jan 01 2013; 20(1): 29-35. PMID 23525679
- Folch EE, Labarca G, Ospina-Delgado D, et al. Sensitivity and Safety of Electromagnetic Navigation Bronchoscopy for Lung Cancer Diagnosis: Systematic Review and Meta-analysis. Chest. May 22 2020. PMID 32450240
- 5. Zhang W, Chen S, Dong X, et al. Meta-analysis of the diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules. J Thorac Dis. May 2015; 7(5): 799-809. PMID 26101635
- Gex G, Pralong JA, Combescure C, et al. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis. Respiration. 2014; 87(2): 165-76. PMID 24401166
- Eberhardt R, Anantham D, Ernst A, et al. Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial. Am J Respir Crit Care Med. Jul 01 2007; 176(1): 36-41. PMID 17379850
- Khandhar SJ, Bowling MR, Flandes J, et al. Electromagnetic navigation bronchoscopy to access lung lesions in 1,000 subjects: first results of the prospective, multicenter NAVIGATE study. BMC Pulm Med. Apr 11 2017; 17(1): 59. PMID 28399830
- Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J Thorac Oncol. Mar 2019; 14(3): 445-458. PMID 30476574
- Ost DE, Ernst A, Lei X, et al. Diagnostic Yield and Complications of Bronchoscopy for Peripheral Lung Lesions. Results of the AQuIRE Registry. Am J Respir Crit Care Med. Jan 01 2016; 193(1): 68-77. PMID 26367186
- Chee A, Stather DR, Maceachern P, et al. Diagnostic utility of peripheral endobronchial ultrasound with electromagnetic navigation bronchoscopy in peripheral lung nodules. Respirology. Jul 2013; 18(5): 784-9. PMID 23521707
- Diken OE, Karnak D, Ciledag A, et al. Electromagnetic navigation-guided TBNA vs conventional TBNA in the diagnosis of mediastinal lymphadenopathy. Clin Respir J. Apr 2015; 9(2): 214-20. PMID 25849298
- Wilson DS, Bartlett BJ. Improved diagnostic yield of bronchoscopy in a community practice: combination of electromagnetic navigation system and rapid on-site evaluation. J Bronchology Interv Pulmonol. 2007;14(4):227-232.

- 14. Kupelian PA, Forbes A, Willoughby TR, et al. Implantation and stability of metallic fiducials within pulmonary lesions. Int J Radiat Oncol Biol Phys. Nov 01 2007; 69(3): 777-85. PMID 17606334
- 15. Anantham D, Feller-Kopman D, Shanmugham LN, et al. Electromagnetic navigation bronchoscopyguided fiducial placement for robotic stereotactic radiosurgery of lung tumors: a feasibility study. Chest. Sep 2007; 132(3): 930-5. PMID 17646225
- 16. Schroeder C, Hejal R, Linden PA. Coil spring fiducial markers placed safely using navigation bronchoscopy in inoperable patients allows accurate delivery of CyberKnife stereotactic radiosurgery. J Thorac Cardiovasc Surg. Nov 2010; 140(5): 1137-42. PMID 20850809
- 17. Bolton WD, Richey J, Ben-Or S, et al. Electromagnetic Navigational Bronchoscopy: A Safe and Effective Method for Fiducial Marker Placement in Lung Cancer Patients. Am Surg. Jul 2015; 81(7): 659-62. PMID 26140883
- 18. Nabavizadeh N, Zhang J, Elliott DA, et al. Electromagnetic navigational bronchoscopy-guided fiducial markers for lung stereotactic body radiation therapy: analysis of safety, feasibility, and interfraction stability. J Bronchology Interv Pulmonol. Apr 2014; 21(2): 123-30. PMID 24739685
- 19. Minnich DJ, Bryant AS, Wei B, et al. Retention Rate of Electromagnetic Navigation Bronchoscopic Placed Fiducial Markers for Lung Radiosurgery. Ann Thorac Surg. Oct 2015; 100(4): 1163-5; discussion 1165-6. PMID 26228602
- 20. Rong Y, Bazan JG, Sekhon A, et al. Minimal Inter-Fractional Fiducial Migration during Image-Guided Lung Stereotactic Body Radiotherapy Using SuperLock Nitinol Coil Fiducial Markers. PLoS One. 2015; 10(7): e0131945. PMID 26158847
- 21. Bowling MR, Folch EE, Khandhar SJ, et al. Fiducial marker placement with electromagnetic navigation bronchoscopy: a subgroup analysis of the prospective, multicenter NAVIGATE study. Ther Adv Respir Dis. Jan-Dec 2019; 13: 1753466619841234. PMID 30958102
- 22. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Non-small cell lung cancer. Version 5.2020.
- https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed May 28, 2020.
- 23. Detterbeck FC, Mazzone PJ, Naidich DP, et al. Screening for lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. May 2013; 143(5 Suppl): e78S-e92S. PMID 23649455

CLICK THE ENVELOPE ICON BELOW TO SUBMIT COMMENTS

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice. Blue Cross & Blue Shield of Rhode Island is an independent licensee of the Blue Cross and Blue Shield Association.

500 EXCHANGE STREET, PROVIDENCE, RI 02903-2699 (401) 274-4848 WWW.BCBSRI.COM