

Medical Coverage Policy | Biomarker Testing in Risk Assessment and Management of Cardiovascular Disease

EFFECTIVE DATE: 02/01/2026

POLICY LAST REVIEWED: 10/15/2025

OVERVIEW

Numerous lipid and non-lipid biomarkers have been proposed as potential risk markers for cardiovascular disease (CVD). Biomarkers assessed herein include, B-type natriuretic peptide, cystatin C, fibrinogen, high-density lipoprotein subclass, leptin, low-density lipoprotein subclass, lipoprotein(a), and lipoprotein-associated phospholipase A2 (Lp-PLA2). These biomarkers have been studied as alternatives or additions to standard lipid panels for risk stratification in CVD or as treatment targets for lipid-lowering therapy. Cardiovascular risk panels refer to different combinations of cardiac markers that are intended to evaluate the risk of CVD. There are numerous commercially available risk panels that include different combinations of lipids, noncardiac biomarkers, measures of inflammation, metabolic parameters, and/or genetic markers. Risk panels report the results of multiple individual tests, as distinguished from quantitative risk scores that combine the results of multiple markers into a single score.

This policy addresses the following test(s):

- Cystatin C, CPT Code 82610
- Fibrinogen; activity, CPT Code 85384
- Fibrinogen; antigen, CPT Code 85385
- Lipoprotein (a), CPT Code 83695
- Lipoprotein-associated phospholipase A2, (Lp-PLA2), CPT Code 83698
- Lipoprotein, blood; electrophoretic separation and quantitation, CPT Code 83700
- Lipoprotein, blood; high resolution fractionation and quantitation of lipoproteins including lipoprotein subclasses when performed (eg, electrophoresis, ultracentrifugation), CPT Code 83701
- Lipoprotein, blood; quantitation of lipoprotein particle number(s) (eg, by nuclear magnetic resonance spectroscopy), includes lipoprotein particle subclass(es), when performed, CPT Code 83704
- Lipoprotein, Direct Measurement; Small Dense LDL Cholesterol, CPT Code 83722
- MI-HEART Ceramides, Plasma (Mayo Clinic), CPT Code 0119U
- Natriuretic peptide, CPT Code 83880
- VAP Cholesterol Test (VAP Diagnostics Laboratory, Inc.), CPT Code 0052U

This policy does not address the use of a simple lipid panel, which includes a total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides. Certain calculated ratios (eg, total/high-density lipoprotein cholesterol) may also be reported as part of a simple lipid panel. Other types of lipid testing (ie, apolipoproteins, lipid particle number or particle size, lipoprotein [a]) are not considered components of a simple lipid profile.

This policy also does not address the use of panels of biomarkers in the diagnosis of acute myocardial infarction.

MEDICAL CRITERIA

Not applicable

PRIOR AUTHORIZATION

Medicare Advantage Plans and Commercial Products

There is no specific CPT coding for some testing referenced in this policy. Therefore, an Unlisted CPT code should be used (See Coding Section for details). All Unlisted genetic testing CPT codes require prior

authorization to determine what service is being rendered and if the service is covered or not medically necessary. See the Related Policies section.

Note: Laboratories are not allowed to obtain clinical authorization or participate in the authorization process on behalf of the ordering physician. Only the ordering physician shall be involved in the authorization, appeal or other administrative processes related to prior authorization/medical necessity.

In no circumstance shall a laboratory or a physician/provider use a representative of a laboratory or anyone with a relationship to a laboratory and/or a third party to obtain authorization on behalf of the ordering physician, to facilitate any portion of the authorization process or any subsequent appeal of a claim where the authorization process was not followed and/or a denial for clinical appropriateness was issued, including any element of the preparation of necessary documentation of clinical appropriateness. If a laboratory or a third party is found to be supporting any portion of the authorization process, BCBSRI will deem the action a violation of this policy and severe action will be taken up to and including termination from the BCBSRI provider network. If a laboratory provides a laboratory service that has not been authorized, the service will be denied as the financial liability of the participating laboratory and may not be billed to the member.

POLICY STATEMENT

Medicare Advantage Plans and Commercial Products

CPT Codes 85384 and 85385

Effective 2/1/2026, the following tests are covered for Medicare Advantage Plans and Commercial Products.

- Fibrinogen; activity (CPT Code 85384)
- Fibrinogen; antigen (CPT Code 85385)

CPT Codes 82610, 83700, 83701 and 83704

Measurement of the following nontraditional lipid and non-lipid biomarkers are medically necessary when filed with a covered diagnosis. See the Coding section for details.

- Lipoprotein, blood; electrophoretic separation and quantitation (CPT Code 83700)
- Lipoprotein, blood; high resolution fractionation and quantitation of lipoproteins including lipoprotein subclasses when performed (eg, electrophoresis, ultracentrifugation) (CPT Code 83701)
- Lipoprotein, blood; quantitation of lipoprotein particle number(s) (eg, by nuclear magnetic resonance spectroscopy), includes lipoprotein particle subclass(es), when performed (CPT Code 83704)
- Cystatin C (CPT Code 82610)

CPT Codes 83695 and 83722

Measurements of the following nontraditional lipid and non-lipid biomarkers are not covered for Medicare Advantage Plans and not medically necessary for Commercial Products as the evidence is insufficient to determine the effects of the technology on health outcomes.

- Lipoprotein (a) (CPT Code 83695)
- Lipoprotein, direct measurement; small dense LDL cholesterol (CPT Code 83722)

CPT Code 83698

Measurement of lipoprotein-associated phospholipase A2 is considered not covered for Medicare Advantage Plans and not medically necessary for Commercial Products as the evidence is insufficient to determine the effects of the technology on health outcomes.

CPT Code 83880

B type natriuretic peptide testing is covered but not separately reimbursed when used in conjunction with standard diagnostic tests, medical history and clinical findings during an evaluation of heart failure in an acute care setting or other setting (i.e. emergency department) where test results are immediately determined.

Other Cardiovascular Disease Testing – CPT Codes 0119U, 0052U and 81479

Cardiovascular disease risk panels, consisting of multiple individual biomarkers intended to assess cardiac risk (other than simple lipid panels), are considered not covered for Medicare Advantage Plans and not medically necessary for Commercial Products as the evidence is insufficient to determine the effects of the technology on health outcomes.

Commercial Products

Some genetic testing services are not covered and a contract exclusion for any self-funded group that has excluded the expanded coverage of biomarker testing related to the state mandate, R.I.G.L. §27-19-81 described in the Biomarker Testing Mandate policy. For these groups, a list of which genetic testing services are covered with prior authorization, are not medically necessary or are not covered because they are a contract exclusion can be found in the Coding section of the Genetic Testing Services or Proprietary Laboratory Analyses policies. Please refer to the appropriate Benefit Booklet to determine whether the member's plan has customized benefit coverage. Please refer to the list of Related Policies for more information.

COVERAGE

Benefits may vary between groups/contracts. Please refer to the appropriate section of the Benefit Booklet, Evidence of Coverage or Subscriber Agreement for services not medically necessary.

BACKGROUND

Simple Lipid Panel

A simple lipid panel is generally composed of the following lipid measures:

- Total cholesterol
- Low-density lipoprotein cholesterol
- High-density lipoprotein cholesterol
- Triglycerides

Certain calculated ratios (eg, total/high-density lipoprotein cholesterol) may also be reported as part of a simple lipid panel.

Other types of lipid testing (ie, apolipoproteins, lipid particle number or particle size, lipoprotein [a]) are not considered components of a simple lipid profile.

Cardiovascular Disease

Cardiovascular disease (CVD) remains the single largest cause of morbidity and mortality in the developed world. Mortality from CVD has accounted for 1 in 4 deaths in the United States, and there are numerous socio-economic factors that affect CVD mortality rates. Lower-income, race, age, and behavioral factors all have a significant impact on health outcome disparities associated with CVD.

As a result, accurate prediction of CVD risk is a component of medical care that has the potential to focus on and direct preventive and diagnostic activities. Current methods of risk prediction in use in general clinical care are not highly accurate and, as a result, there is a potential unmet need for improved risk prediction instruments.

Experts recommend formal genetic counseling for individuals who are at risk for inherited disorders and who wish to undergo genetic testing. Interpreting the results of genetic tests and understanding risk factors can be difficult for some individuals; genetic counseling helps individuals understand the impact of genetic testing, including the possible effects the test results could have on the individual or their family members. It should be noted that genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing; further, genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Risk Assessment

Although treatment for elevated coronary disease risk with statins targets cholesterol levels, selection for treatment involves estimation of future coronary artery disease (CAD) risk using well-validated prediction models that use additional variables.

Components of CVD risk include family history, cigarette smoking, hypertension, and lifestyle factors such as diet and exercise. Also, numerous laboratory tests have been associated with CVD risk, most prominently lipids such as low-density lipoprotein (LDL) and high-density lipoprotein (HDL). These clinical and lipid factors are often combined into simple risk prediction instruments, such as the Framingham Risk Score. The Framingham Risk Score provides an estimate of the 10-year risk for developing cardiac disease and is currently used in clinical care to determine the aggressiveness of risk factor intervention, such as the decision to treat hyperlipidemia with statins.

Many additional biomarkers, genetic factors, and radiologic measures have been associated with an increased risk of CVD. Over 100 emerging risk factors have been proposed as useful for refining estimates of CVD risk. Some general categories of these potential risk factors are as follows:

Lipid Markers. In addition to LDL and HDL, other lipid markers may have predictive ability, including the apolipoproteins, lipoprotein (a) (Lp[a]), lipid subfractions, and/or other measures.

Inflammatory Markers. Many measures of inflammation have been linked to the likelihood of CVD. High-sensitivity C-reactive protein (hs-CRP) is an example of an inflammatory marker; others include fibrinogen, interleukins, and tumor necrosis factor.

Metabolic Syndrome Biomarkers. Measures associated with metabolic syndromes, such as specific dyslipidemic profiles or serum insulin levels, have been associated with an increased risk of CVD.

Genetic markers. A number of variants associated with increased thrombosis risk, such as the 5,10-methylene tetrahydrofolate reductase (MTHFR) variant or the prothrombin gene variants, have been associated with increased CVD risk. Also, numerous single nucleotide variants have been associated with CVD in large genome-wide studies.

Risk Panel Testing

CVD risk panels may contain measures from 1 or all of the previous categories and may include other measures not previously listed such as radiologic markers (carotid medial thickness, coronary artery calcium score). Some CVD risk panels are relatively limited, including a few markers in addition to standard lipids. Others include a wide variety of potential risk factors from a number of different categories, often including both genetic and nongenetic risk factors. Other panels are composed entirely of genetic markers.

Some examples of commercially available CVD risk panels are as follows:

CV Health Plus Genomics™ Panel (Genova Diagnostics): prothrombin; factor V Leiden; fibrinogen; HDL; HDL size; HDL particle number; homocysteine; LDL; LDL size; LDL particle number; Lp(a); lipoprotein-associated phospholipase A2 (Lp-PLA2); MTHFR gene; triglycerides; very-low-density lipoprotein (VLDL); VLDL size; vitamin D; hs-CRP.

CV Health Plus™ Panel (Genova Diagnostics): fibrinogen; HDL; HDL size; HDL particle number; homocysteine; LDL; LDL size; LDL particle number; lipid panel; Lp(a); Lp-PLA2; triglycerides; VLDL; VLDL size; vitamin D; hs-CRP.

CVD Inflammatory Profile (Cleveland HeartLab): hs-CRP, urinary microalbumin, myeloperoxidase, Lp-PLA2, F2 isoprostanes.

Applied Genetics Cardiac Panel: genetic variants associated with CAD: cytochrome p450 variants associated with the metabolism of clopidogrel, ticagrelor, warfarin, beta-blockers, rivaroxaban, prasugrel (2C19, 2C9/VKORC1, 2D6, 3A4/3A5), factor V Leiden, prothrombin gene, MTHFR gene, APOE gene.

Genetiks Genetic Diagnosis and Research Center Cardiovascular Risk Panel: factor V Leiden, factor V R2, prothrombin gene, factor XIII, fibrinogen-455, plasminogen activator inhibitor-1, platelet glycoprotein (GP) IIIA variant human platelet antigen (HPA)-1 (PLA1/2), MTHFR gene, angiotensin-converting enzyme insertion/deletion, apo B, apo E.

In addition to panels that are specifically focused on CVD risk, a number of commercially available panels include markers associated with cardiovascular health, along with a range of other markers that have been associated with inflammation, thyroid disorders and other hormonal deficiencies, and other disorders. An example of these panels is:

Advanced Health Panel (Thorne): total cholesterol, HDL, LDL, triglycerides, HDL ratios, non-HDL cholesterol, LDL particle number, small LDL, medium LDL, LDL pattern, LDL peak size, large HDL, apo A1, apo B, Lp(a), cortisol, hs-CRP, homocysteine, glucose, hemoglobin A1c, insulin, homeostatic model assessment for insulin resistance, free T4, free T3, thyroid-stimulating hormone, reverse T3, dehydroepiandrosterone sulfate, estradiol, follicle stimulating hormone, luteinizing hormone, sex hormone binding globulin, total testosterone, free testosterone, albumin, globulin, albumin/globulin ratio, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gammaglutamyl transferase, total bilirubin, total serum protein, blood urea nitrogen, creatinine, blood urea nitrogen/creatinine ratio, estimated glomerular filtration rate from creatinine, estimated glomerular filtration rate from cystatin C, cystatin C, fibrinogen, platelet count, white cell count, absolute neutrophils, lymphocytes, absolute lymphocytes, monocytes, absolute monocytes, eosinophils, absolute eosinophils, basophils, absolute basophils, red blood cell count, hemoglobin, hematocrit, mean platelet volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular volume, red cell distribution width, folate, vitamin B12, vitamin D, red blood cell magnesium, calcium, carbon dioxide, chloride, potassium, sodium, ferritin, iron total iron binding capacity, omega-3 index, omega-6 to omega-3 ratio, arachidonic acid, eicosapentaenoic acid, eicosapentaenoic acid/arachidonic acid ratio, docosahexaenoic acid, free fatty acids.

Low-density Lipoproteins (LDLs) and Cardiovascular Disease

Low-density lipoproteins (LDLs) have been identified as the major atherogenic lipoproteins and have long been identified by the National Cholesterol Education Project as the primary target of cholesterol-lowering therapy. An LDL particle consists of a surface coat composed of phospholipids, free cholesterol, and apolipoproteins surrounding an inner lipid core composed of cholesterol ester and triglycerides. Traditional lipid risk factors such as LDL cholesterol (LDL-C), while predictive on a population basis, are weaker markers of risk on an individual basis. Only a minority of subjects with elevated LDL and cholesterol levels will develop clinical disease, and up to 50% of cases of CAD occur in subjects with "normal" levels of total cholesterol and LDL-C. Thus, there is considerable potential to improve the accuracy of current cardiovascular risk prediction models.

Other non-lipid markers have been identified as being associated with CVD, including B-type natriuretic peptide, cystatin C, fibrinogen, and leptin. These biomarkers may have a predictive role in identifying CVD risk or in targeting therapy.

Lipid Markers

High-Density Lipoprotein (HDL) Subclass

HDL particles exhibit considerable heterogeneity, and it has been proposed that various subclasses of HDL may have a greater role in protection from atherosclerosis. Particles of HDL can be characterized based on size or density and/or on apolipoprotein composition. Using size or density, HDL can be classified into HDL2, the larger, less dense particles that may have the greatest degree of cardioprotection, and HDL3, which are smaller, denser particles.

An alternative to measuring the concentration of subclasses of HDL (eg, HDL2, HDL3) is a direct measurement of HDL particle size and/or number. Particle size can be measured by nuclear magnetic resonance (NMR) spectroscopy or by gradient-gel electrophoresis. HDL particle numbers can be measured by NMR spectroscopy. Several commercial labs offer these measurements of HDL particle size and number. Measurement of apo AI has used HDL particle number as a surrogate, based on the premise that each HDL particle contains a single apo AI molecule.

Low-Density Lipoprotein (LDL) Subclass

Two main subclass patterns of LDL, called A and B, have been described. In subclass pattern A, particles have a diameter larger than 25 nm and are less dense, while in subclass pattern B, particles have a diameter less than 25 nm and a higher density. Subclass pattern B is a common inherited disorder associated with a more atherogenic lipoprotein profile, also termed “atherogenic dyslipidemia.” In addition to small, dense LDL, this pattern includes elevated levels of triglycerides, elevated levels of apo B, and low levels of HDL. This lipid profile is commonly seen in type 2 diabetes and is a component of the “metabolic syndrome,” defined by the Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) to also include high normal blood pressure, insulin resistance, increased levels of inflammatory markers such as C-reactive protein, and a prothrombotic state. The presence of the metabolic syndrome is considered by Adult Treatment Panel III to be a substantial risk-enhancing factor for CAD.

LDL size has also been proposed as a potentially useful measure of treatment response. Lipid-lowering treatment decreases total LDL and may also induce a shift in the type of LDL, from smaller, dense particles to larger particles. It has been proposed that this shift in lipid profile may be beneficial in reducing the risk for CAD independent of the total LDL level. Also, some drugs may cause a greater shift in lipid profiles than others. Niacin and/or fibrates may cause a greater shift from small to large LDL size than statins. Therefore, measurement of LDL size may potentially play a role in drug selection or may be useful in deciding whether to use a combination of drugs rather than a statin alone.

In addition to the size of LDL particles, interest has been shown in assessing the concentration of LDL particles as a distinct cardiac risk factor. For example, the commonly performed test for LDL-C is not a direct measure of LDL, but, chosen for its convenience, measures the amount of cholesterol incorporated into LDL particles. Because LDL particles carry much of the cholesterol in the bloodstream, the concentration of cholesterol in LDL correlates reasonably well with the number of LDL particles when examined in large populations. However, for an individual patient, the LDL level may not reflect the number of particles due to varying levels of cholesterol in different sized particles. It is proposed that the discrepancy between the number of LDL particles and the serum level of LDL represents a significant source of unrecognized atherogenic risk. The size and number of particles are interrelated. For example, all LDL particles can invade the arterial wall and initiate atherosclerosis. However, small, dense particles are thought to be more atherogenic than larger particles. Therefore, for patients with elevated numbers of LDL particles, the cardiac risk may be further enhanced when the particles are smaller versus larger.

Lipoprotein (a)

Lp (a) is a lipid-rich particle similar to LDL. The major apolipoprotein associated with LDL is Apo B; in Lp(a), however, there is an additional apo A covalently linked to apo B. The apo A molecule is structurally similar to plasminogen, suggesting that Lp(a) may contribute to the thrombotic and atherogenic basis of CVD. Levels of Lp(a) are relatively stable in individuals over time but vary up to 1000-fold between individuals, presumably on a genetic basis. The similarity between Lp(a) and fibrinogen has stimulated intense interest in Lp(a) as a link between atherosclerosis and thrombosis. In addition, approximately 20% of patients with CAD have elevated Lp(a) levels. Therefore, it has been proposed that levels of Lp(a) may be an independent risk factor for CAD.

Non-Lipid Markers

B-type or Brain Natriuretic Peptide

Brain natriuretic peptide (BNP, also called B-type natriuretic peptide) is an amino acid polypeptide secreted primarily by the ventricles of the heart when the pressure to the cardiac muscles increases or there is myocardial ischemia. Elevations in BNP levels reflect deterioration in cardiac loading levels and may predict adverse events. Brain natriuretic peptide has been studied as a biomarker for managing heart failure and predicting cardiovascular and heart failure risk.

Cystatin C

Cystatin C is a small serine protease inhibitor protein secreted from all functional cells in the body. It has primarily been used as a biomarker of kidney function. Cystatin C has also been studied to determine whether it may serve as a biomarker for predicting cardiovascular risk. Cystatin C is encoded by the CST3 gene.

Leptin

Leptin is a protein secreted by fat cells that have been found to be elevated in heart disease. Leptin has been studied to determine if it has any relation to the development of CVD.

Lipoprotein-associated Phospholipase A2

Lipoprotein-associated phospholipase A2 (Lp-PLA2), also known as platelet-activating factor acetylhydrolase, is an enzyme that hydrolyzes phospholipids and is primarily associated with LDLs. Accumulating evidence has suggested that Lp-PLA2 is a biomarker of CAD and may have a proinflammatory role in the progression of atherosclerosis. Recognition that atherosclerosis represents, in part, an inflammatory process has created considerable interest in the measurement of proinflammatory factors as part of cardiovascular disease risk assessment.

Interest in Lp-PLA2 as a possible causal risk factor for CAD has generated the development and testing of Lp-PLA2 inhibitors as a new class of drugs to reduce the risk of CAD. However, clinical trials of Lp-PLA2 inhibitors have not shown significant reductions in CAD endpoints. Furthermore, assessment of Lp-PLA2 levels has not been used in the selection or management of subjects in the clinical trials.

Regulatory Status

Multiple assay methods for cardiac risk marker components, such as lipid panels and other biochemical assays, have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process.

In December 2014, the PLAC® Test (diaDexus), a quantitative enzyme assay, was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for Lp-PLA2 activity. It was considered substantially equivalent to a previous version of the PLAC® Test (diaDexus), which was cleared for marketing by the FDA in July 2003.

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Components of testing panels, lipid, and non-lipid biomarker tests are available under the auspices of the CLIA. Laboratories that offer laboratory-developed tests must be licensed by the CLIA for high-complexity testing. To date, the FDA has chosen not to require any regulatory review of these tests.

There is a Local Coverage Determination (LCD) for B-type Natriuretic Peptide (BNP) Testing that indicates: BNP measurements may be considered reasonable and necessary when used in combination with other medical data such as medical history, physical examination, laboratory studies, chest x-ray, and electrocardiography:

- To distinguish cardiac cause of acute dyspnea from pulmonary or other non-cardiac causes. Plasma BNP levels are significantly increased in patients with CHF (Congestive Heart Failure) presenting with acute dyspnea compared with patients presenting with acute dyspnea due to other causes.

- To distinguish decompensated CHF from exacerbated chronic obstructive pulmonary disease (COPD) in a symptomatic patient with combined chronic CHF and COPD. Plasma BNP levels are significantly increased in patients with CHF with or without concurrent lung disease compared with patients who have primary lung disease.
- To establish prognosis or disease severity in chronic CHF when needed to guide therapy
- To achieve optimal dosing of guideline-directed medical therapy (GDMT) in select clinically euvolemic patients followed in a well-structured heart failure (HF) disease management program
- To guide therapeutic decision-making in individuals who have amyloidosis

BNP measurements must be analyzed in conjunction with standard diagnostic tests, medical history and clinical findings. The efficacy of BNP measurement as a stand-alone test has not yet been established. Clinicians should be aware that certain conditions such as ischemia, infarction and renal insufficiency, may cause elevation of circulating BNP concentration and require alterations of the interpretation of BNP results. Therefore, B type natriuretic peptide testing is covered but not separately reimbursed when used in conjunction with standard diagnostic tests, medical history and clinical findings during an evaluation of heart failure in an acute care setting or other setting (i.e. emergency department) where test results are immediately determined.

For individuals who are asymptomatic with risk of cardiovascular disease (CVD) who receive nontraditional cardiac biomarker testing (eg, high-density lipoprotein [HDL] subclass, low-density lipoprotein [LDL] subclass, lipoprotein[a], cystatin C), the evidence includes systematic reviews, meta-analyses, and large, prospective cohort studies. Relevant outcomes are overall survival (OS), other test performance measures, change in disease status, morbid events, and medication use. The evidence from cohort studies and meta-analyses of these studies has suggested that some of these markers are associated with increased cardiovascular risk and may provide incremental accuracy in risk prediction. However, it has not been established whether the incremental accuracy provides clinically important information beyond that of traditional lipid measures. Furthermore, no study has provided high-quality evidence that measurement of markers leads to changes in management that improve health outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals with hyperlipidemia managed with lipid-lowering therapy who receive nontraditional cardiac biomarker testing (eg, lipoprotein [a], cystatin C), the evidence includes analyses of the intervention arm(s) of lipid-lowering medication trials. Relevant outcomes are OS, change in disease status, morbid events, and medication use. However, there is no direct evidence that using markers other than LDL and HDL as a lipid-lowering treatment target leads to improved health outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have a risk of CVD who receive Lp-PLA2 testing, the evidence includes studies of the association between Lp-PLA2 and various coronary artery disease (CAD) outcomes. Relevant outcomes are OS, disease-specific survival, and test validity. The studies have demonstrated that Lp-PLA2 levels are an independent predictor of CVD. Although Lp-PLA2 levels are associated with CVD risk, changes in patient management that would occur as a result of obtaining Lp-PLA2 levels in practice are not well-defined. To demonstrate clinical utility, clinicians must have the tools to incorporate Lp-PLA2 test results into existing risk prediction models that improve classification into risk categories, alter treatment decisions, and lead to improved health outcomes. Direct evidence for such improved health outcomes with Lp-PLA2 testing in clinical practice is lacking. The evidence is insufficient to determine that the technology results in an improvement in the net health outcomes.

For individuals who have risk factors for CVD who receive CVD risk panels, the evidence includes multiple cohorts and case-control studies and systematic reviews of these studies. Relevant outcomes are test validity, other test performance measures, change in disease status, and morbid events. The available evidence from cohort and case-control studies indicates that many of the individual risk factors included in CVD risk panels are associated with an increased risk of CVD. However, it is not clear how the results of individual risk factors impact management changes, so it is also uncertain how the panels will impact management decisions.

Given the lack of evidence for the clinical utility of any individual risk factor beyond simple lipid measures, it is unlikely that the use of CVD risk panels improves outcomes. Studies that have evaluated the clinical validity of panels of multiple markers have not assessed management changes that would occur as a result of testing or demonstrated improvements in outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

CODING

Medicare Advantage Plans and Commercial Products

The following CPT code(s) are covered for Medicare Advantage Plans and Commercial Products:

- 85384** Fibrinogen; activity
- 85385** Fibrinogen; antigen

The following CPT codes are medically necessary when filed with one of the covered ICD-10-CM codes, below:

- 83700** Lipoprotein, blood; electrophoretic separation and quantitation
- 83701** Lipoprotein, blood; high resolution fractionation and quantitation of lipoproteins including lipoprotein subclasses when performed (eg, electrophoresis, ultracentrifugation)
- 83704** Lipoprotein, blood; quantitation of lipoprotein particle number(s) (eg, by nuclear magnetic resonance spectroscopy), includes lipoprotein particle subclass(es), when performed

Covered ICD-10-CM

The following CPT code(s) are not covered for Medicare Advantage Plans and not medically necessary for Commercial Products:

- 83695** Lipoprotein (a)
- 83698** Lipoprotein-associated phospholipase A2, (Lp-PLA2)
- 83722** Lipoprotein, Direct Measurement; Small Dense LDL Cholesterol

The following CPT code is used for MI-HEART Ceramides, Plasma:

- 0119U** Cardiology, ceramides by liquid chromatography-tandem mass spectrometry, plasma, quantitative report with risk score for major cardiovascular events

The following CPT code is used for VAP Cholesterol Test:

- 0052U** Lipoprotein, blood, high resolution fractionation and quantitation of lipoproteins, including all five major lipoprotein classes and subclasses of HDL, LDL, and VLDL by vertical auto profile ultracentrifugation

The following CPT code(s) are not covered for Medicare Advantage Plans and not medically necessary for Commercial Products **EXCEPT** when utilized for evaluating renal function and filed with one of the covered ICD-10-CM codes, below:

- 82610** Cystatin C

Covered ICD-10-CM codes:

- N18.30 – N18.32
- T36.AX1A – T36.AX4S (New Codes Effective 10/1/2025)
- T45.AX1A - T45.AX5S
- T50.904A - T50.905S
- T50.994A - T50.995S
- T65.94XA - T65.94XS
- Z52.4
- Z92.26

*When there is no specific CPT code for a cardiovascular risk panel, the following Unlisted CPT code should be filed:

- 81479** Unlisted molecular pathology procedure

The following CPT code is covered but not separately reimbursed for Medicare Advantage Plans and Commercial Products:

83880 Natriuretic peptide

RELATED POLICIES

Biomarker Testing Mandate

Genetic Testing Services

Medicare Advantage Plans National and Local Coverage Determinations Policy

Non-Reimbursable Health Service Codes

Proprietary Laboratory Analyses (PLA) and Multianalyte Assays with Algorithmic Analyses (MAAA)

Unlisted Procedures

PUBLISHED

Provider Update, May/December 2025

Provider Update: February 2024, October 2024

Provider Update, March 2023, November 2023

Provider Update, April 2022

Provider Update, April 2021

REFERENCES

1. Centers for Medicare and Medicaid Services Local Coverage Determination (LCD): B-type Natriuretic Peptide (BNP) Testing (L33573)
2. Centers for Medicare and Medicaid Services Local Coverage Determination (LCD) Article: Billing and Coding: B-type Natriuretic Peptide (BNP) Testing (A56826)
3. Centers for Medicare and Medicaid Services Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000)
4. Centers for Medicare and Medicaid Services Local Coverage Determination (LCD) Article: Billing and Coding: Molecular Pathology Procedures (A56199)
5. Centers for Medicare and Medicaid Services Local Coverage Determination (LCD): Cystatin C Measurement (L35781)
6. Centers for Medicare and Medicaid Services Local Coverage Determination (LCD) Article: Billing and Coding: Cystatin C Measurement (A56948)
7. Niakouei A, Tehrani M, Fulton L. Health Disparities and Cardiovascular Disease. *Healthcare (Basel)*. Mar 22 2020; 8(1). PMID 32235705
8. D'Agostino RB, Grundy S, Sullivan LM, et al. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. *JAMA*. Jul 11 2001; 286(2): 180-7. PMID 11448281
9. Helfand M, Buckley DI, Freeman M, et al. Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U.S. Preventive Services Task Force. *Ann Intern Med*. Oct 062009; 151(7): 496-507. PMID 19805772
10. Brotman DJ, Walker E, Lauer MS, et al. In search of fewer independent risk factors. *Arch Intern Med*. Jan 24 2005; 165(2): 138-45. PMID 15668358
11. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol*. Dec 14 2010; 56(25): e50-103. PMID 21144964
12. Thorne. Advanced Health Panel. <https://www.thorne.com/products/dp/advanced-health-panel>. Accessed October 30, 2024.
13. Mensah GA, Mokdad AH, Ford ES, et al. State of disparities in cardiovascular health in the United States. *Circulation*. Mar 15 2005; 111(10): 1233-41. PMID 15769763
14. White HD, Held C, Stewart R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. *N Engl J Med*. May 01 2014; 370(18): 1702-11. PMID 24678955

15. O'Donoghue ML, Braunwald E, White HD, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. *JAMA*. Sep 10 2014; 312(10):1006-15. PMID 25173516
16. Nicholls SJ, Kastelein JJ, Schwartz GG, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. *JAMA*. Jan 15 2014; 311(3): 252-62. PMID 24247616
17. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). *JAMA*. May 16 2001; 285(19): 2486-97. PMID 11368702
18. Perera R, McFadden E, McLellan J, et al. Optimal strategies for monitoring lipid levels in patients at risk or with cardiovascular disease: a systematic review with statistical and cost-effectiveness modelling. *Health Technol Assess*. Dec 2015; 19(100): 1-401, vii-viii. PMID 26680162
19. Thanassoulis G, Williams K, Ye K, et al. Relations of change in plasma levels of LDL-C, non-HDL-C and apo B with risk reduction from statin therapy: a meta-analysis of randomized trials. *J Am Heart Assoc*. Apr 14 2014; 3(2): e000759. PMID 24732920
20. van Holten TC, Waanders LF, de Groot PG, et al. Circulating biomarkers for predicting cardiovascular disease risk; a systematic review and comprehensive overview of meta-analyses. *PLoS One*. 2013;8(4): e62080. PMID 23630624
21. Tzoulaki I, Sontis KC, Evangelou E, et al. Bias in associations of emerging biomarkers with cardiovascular disease. *JAMA Intern Med*. Apr 22 2013; 173(8): 664-71. PMID 23529078
22. Willis A, Davies M, Yates T, et al. Primary prevention of cardiovascular disease using validated risk scores: a systematic review. *J R Soc Med*. Aug 2012; 105(8): 348-56. PMID 22907552
23. Robinson JG, Wang S, Jacobson TA. Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and nonhigh-density lipoprotein cholesterol for cardiovascular risk reduction in randomized trials. *Am J Cardiol*. Nov 15 2012; 110(10): 1468-76. PMID 22906895
24. Di Angelantonio E, Gao P, Pennells L, et al. Lipid-related markers and cardiovascular disease prediction. *JAMA*. Jun 20 2012; 307(23): 2499-506. PMID 22797450
25. Lamarche B, Moorjani S, Lupien PJ, et al. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Québec cardiovascular study. *Circulation*. Aug 01 1996; 94(3): 273-8. PMID 8759066
26. Walldius G, Jungner I, Holme I, et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. *Lancet*. Dec 15 2001; 358(9298): 2026-33. PMID 11755609
27. Ridker PM, Rifai N, Cook NR, et al. Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. *JAMA*. Jul 2005; 294(3): 326-33. PMID 16030277
28. Benn M, Nordestgaard BG, Jensen GB, et al. Improving prediction of ischemic cardiovascular disease in the general population using apolipoprotein B: the Copenhagen City Heart Study. *Arterioscler Thromb Vasc Biol*. Mar 2007; 27(3): 661-70. PMID 17170368
29. Kappelle PJ, Gansevoort RT, Hillege JL, et al. Apolipoprotein B/A-I and total cholesterol/high-density lipoprotein cholesterol ratios both predict cardiovascular events in the general population independently of nonlipid risk factors, albuminuria and C-reactive protein. *J Intern Med*. Feb 2011; 269(2): 232-42. PMID 21129046
30. Pencina MJ, D'Agostino RB, Zdrojewski T, et al. Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C. *Eur J Prev Cardiol*. Oct 2015; 22(10): 1321-7. PMID 25633587
31. Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. *Circulation*. Sep 04 2001; 104(10): 1108-13. PMID 11535564
32. Rasouli M, Kiasari AM, Mokhberi V. The ratio of apo B/apo AI, apo B and lipoprotein(a) are the best predictors of stable coronary artery disease. *Clin Chem Lab Med*. 2006; 44(8): 1015-21. PMID 16879071

33. Walldius G, Jungner I. Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. *J Intern Med.* Feb 2004; 255(2): 188-205. PMID 14746556
34. Ridker PM, Buring JE, Rifai N, et al. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. *JAMA.* Feb 14 2007;297(6): 611-9. PMID 17299196
35. Ingelsson E, Schaefer EJ, Contois JH, et al. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. *JAMA.* Aug 15 2007; 298(7): 776-85. PMID 17699011
36. Sniderman AD, Islam S, Yusuf S, et al. Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study. *Atherosclerosis.* Dec 2012; 225(2): 444-9. PMID 23068583
37. Clarke R, Emberson JR, Parish S, et al. Cholesterol fractions and apolipoproteins as risk factors for heart disease mortality in older men. *Arch Intern Med.* Jul 09 2007; 167(13): 1373-8. PMID 17620530
38. van der Steeg WA, Boekholdt SM, Stein EA, et al. Role of the apolipoprotein B-apolipoprotein A-I ratio in cardiovascular risk assessment: a case-control analysis in EPIC-Norfolk. *Ann Intern Med.* May 012007; 146(9): 640-8. PMID 17470832
39. Gotto AM, Whitney E, Stein EA, et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). *Circulation.* Feb 08 2000; 101(5): 477-84. PMID 10662743
40. Simes RJ, Marschner IC, Hunt D, et al. Relationship between lipid levels and clinical outcomes in the Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Trial: to what extent is the reduction in coronary events with pravastatin explained by on-study lipid levels?. *Circulation.* Mar 122002; 105(10): 1162-9. PMID 11889008
41. Kastelein JJ, van der Steeg WA, Holme I, et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. *Circulation.* Jun 10 2008; 117(23): 3002-9. PMID 18519851
42. Mora S, Wenger NK, Demicco DA, et al. Determinants of residual risk in secondary prevention patients treated with high- versus low-dose statin therapy: the Treating to New Targets (TNT) study. *Circulation.* Apr 24 2012; 125(16): 1979-87. PMID 22461416
43. Bennet AM, Di Angelantonio E, Ye Z, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. *JAMA.* Sep 19 2007; 298(11): 1300-11. PMID 17878422
44. Sofat R, Cooper JA, Kumari M, et al. Circulating Apolipoprotein E Concentration and Cardiovascular Disease Risk: Meta-analysis of Results from Three Studies. *PLoS Med.* Oct 2016; 13(10): e1002146. PMID 27755538
45. Koch W, Hoppmann P, Schömig A, et al. Apolipoprotein E gene epsilon2/epsilon3/epsilon4 polymorphism and myocardial infarction: case-control study in a large population sample. *Int J Cardiol.* Mar 28 2008; 125(1): 116-7. PMID 17433475
46. Kulminski AM, Ukraintseva SV, Arbeev KG, et al. Health-protective and adverse effects of the apolipoprotein E epsilon2 allele in older men. *J Am Geriatr Soc.* Mar 2008; 56(3): 478-83. PMID 18179501
47. Schmitz F, Mevissen V, Krantz C, et al. Robust association of the APOE epsilon4 allele with premature myocardial infarction especially in patients without hypercholesterolaemia: the Aachen study. *Eur J Clin Invest.* Feb 2007; 37(2): 106-8. PMID 17217375
48. Vaisi-Raygani A, Rahimi Z, Nomani H, et al. The presence of apolipoprotein epsilon4 and epsilon2alleles augments the risk of coronary artery disease in type 2 diabetic patients. *Clin Biochem.* Oct 2007;40(15): 1150-6. PMID 17689519
49. Ciftdoğan DY, Coskun S, Ulman C, et al. The association of apolipoprotein E polymorphism and lipid levels in children with a family history of premature coronary artery disease. *J Clin Lipidol.* 2012; 6(1):81-7. PMID 22264578
50. Vasunilashorn S, Glei DA, Lan CY, et al. Apolipoprotein E is associated with blood lipids and inflammation in Taiwanese older adults. *Atherosclerosis.* Nov 2011; 219(1): 349-54. PMID 21840004
51. de Andrade M, Thandi I, Brown S, et al. Relationship of the apolipoprotein E polymorphism with carotid artery atherosclerosis. *Am J Hum Genet.* Jun 1995; 56(6): 1379-90. PMID 7762561
52. Eichner JE, Kuller LH, Orchard TJ, et al. Relation of apolipoprotein E phenotype to myocardial infarction and mortality from coronary artery disease. *Am J Cardiol.* Jan 15 1993; 71(2): 160-5. PMID 8421977

53. Wilson PW, Myers RH, Larson MG, et al. Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. *JAMA*. Dec 07 1994; 272(21): 1666-71. PMID 7966894
54. Wilson PW, Schaefer EJ, Larson MG, et al. Apolipoprotein E alleles and risk of coronary disease. A meta-analysis. *Arterioscler Thromb Vasc Biol*. Oct 1996; 16(10): 1250-5. PMID 8857921
55. Volcik KA, Barkley RA, Hutchinson RG, et al. Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC study participants. *Am J Epidemiol*. Aug 15 2006; 164(4): 342-8. PMID 16760224
56. Singh K, Chandra A, Sperry T, et al. Associations Between High-Density Lipoprotein Particles and Ischemic Events by Vascular Domain, Sex, and Ethnicity: A Pooled Cohort Analysis. *Circulation*. Aug 18 2020; 142(7): 657-669. PMID 32804568
57. Mora S, Glynn RJ, Ridker PM. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. *Circulation*. Sep 10 2013; 128(11): 1189-97. PMID 24002795
58. Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. *JAMA*. Sep 18 1996; 276(11): 882-8. PMID 8782637
59. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. *Circulation*. Jan 07 1997; 95(1): 69-75. PMID 8994419
60. Tzou WS, Douglas PS, Srinivasan SR, et al. Advanced lipoprotein testing does not improve identification of subclinical atherosclerosis in young adults: the Bogalusa Heart Study. *Ann Intern Med*. May 03 2005; 142(9): 742-50. PMID 15867406
61. Blake GJ, Otvos JD, Rifai N, et al. Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. *Circulation*. Oct 08 2002; 106(15): 1930-7. PMID 12370215
62. Kuller L, Arnold A, Tracy R, et al. Nuclear magnetic resonance spectroscopy of lipoproteins and risk of coronary heart disease in the cardiovascular health study. *Arterioscler Thromb Vasc Biol*. Jul 01 2002; 22(7): 1175-80. PMID 12117734
63. Rosenson RS, Otvos JD, Freedman DS. Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial. *Am J Cardiol*. Jul 15 2002; 90(2): 89-94. PMID 12106834
64. Otvos JD, Jeyarajah EJ, Cromwell WC. Measurement issues related to lipoprotein heterogeneity. *Am J Cardiol*. Oct 17 2002; 90(8A): 22i-29i. PMID 12419478
65. Rosenson RS, Underberg JA. Systematic review: Evaluating the effect of lipid-lowering therapy on lipoprotein and lipid values. *Cardiovasc Drugs Ther*. Oct 2013; 27(5): 465-79. PMID 23893306
66. Mora S, Otvos JD, Rifai N, et al. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. *Circulation*. Feb 24 2009; 119(7): 931-9. PMID 19204302
67. Toth PP, Grabner M, Punekar RS, et al. Cardiovascular risk in patients achieving low-density lipoprotein cholesterol and particle targets. *Atherosclerosis*. Aug 2014; 235(2): 585-91. PMID 24956532
68. Bennet A, Di Angelantonio E, Erqou S, et al. Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective data. *Arch Intern Med*. Mar 24 2008; 168(6): 598-608. PMID 18362252
69. Smolders B, Lemmens R, Thijs V. Lipoprotein (a) and stroke: a meta-analysis of observational studies. *Stroke*. Jun 2007; 38(6): 1959-66. PMID 17478739
70. Khera AV, Everett BM, Caulfield MP, et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). *Circulation*. Feb 11 2014; 129(6): 635-42. PMID 24243886
71. Albers JJ, Slee A, O'Brien KD, et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). *J Am Coll Cardiol*. Oct 22 2013; 62(17): 1575-9. PMID 23973688
72. Kamstrup PR, Benn M, Tybjaerg-Hansen A, et al. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study. *Circulation*. Jan 15 2008; 117(2): 176-84. PMID 18086931

73. Tzoulaki I, Murray GD, Lee AJ, et al. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. *Circulation*. Apr 24 2007;115(16): 2119-27. PMID 17404162

74. Zakai NA, Katz R, Jenny NS, et al. Inflammation and hemostasis biomarkers and cardiovascular risk in the elderly: the Cardiovascular Health Study. *J Thromb Haemost*. Jun 2007; 5(6): 1128-35. PMID 17388967

75. Waldeyer C, Makarova N, Zeller T, et al. Lipoprotein(a) and the risk of cardiovascular disease in the European population: results from the BiomarCaRE consortium. *Eur Heart J*. Aug 21 2017; 38(32):2490-2498. PMID 28449027

76. Lee SR, Prasad A, Choi YS, et al. LPA Gene, Ethnicity, and Cardiovascular Events. *Circulation*. Jan 172017; 135(3): 251-263. PMID 27831500

77. Rigal M, Ruidavets JB, Viguer A, et al. Lipoprotein (a) and risk of ischemic stroke in young adults. *J Neurol Sci*. Jan 15 2007; 252(1): 39-44. PMID 17113602

78. Suk Danik J, Rifai N, Buring JE, et al. Lipoprotein(a), hormone replacement therapy, and risk of future cardiovascular events. *J Am Coll Cardiol*. Jul 08 2008; 52(2): 124-31. PMID 18598891

79. Genser B, Dias KC, Siekmeier R, et al. Lipoprotein (a) and risk of cardiovascular disease--a systematic review and meta analysis of prospective studies. *Clin Lab*. 2011; 57(3-4): 143-56. PMID 21500721

80. Erqou S, Kaptoge S, Perry PL, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. *JAMA*. Jul 22 2009; 302(4): 412-23. PMID 19622820

81. Vazirian F, Sadeghi M, Kelesidis T, et al. Predictive value of lipoprotein(a) in coronary artery calcification among asymptomatic cardiovascular disease subjects: A systematic review and meta-analysis. *Nutr Metab Cardiovasc Dis*. Nov 2023; 33(11): 2055-2066. PMID 37567791

82. Schaefer EJ, Lamon-Fava S, Jenner JL, et al. Lipoprotein(a) levels and risk of coronary heart disease in men. The lipid Research Clinics Coronary Primary Prevention Trial. *JAMA*. Apr 06 1994; 271(13): 999-1003. PMID 8139085

83. Nestel PJ, Barnes EH, Tonkin AM, et al. Plasma lipoprotein(a) concentration predicts future coronary and cardiovascular events in patients with stable coronary heart disease. *Arterioscler Thromb Vasc Biol*. Dec 2013; 33(12): 2902-8. PMID 24092750

84. Bostom AG, Cupples LA, Jenner JL, et al. Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and younger. A prospective study. *JAMA*. Aug 21 1996; 276(7): 544-8. PMID 8709403

85. Ohira T, Schreiner PJ, Morrisett JD, et al. Lipoprotein(a) and incident ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. *Stroke*. Jun 2006; 37(6): 1407-12. PMID 16675734

86. Fogacci F, Cicero AF, D'Addato S, et al. Serum lipoprotein(a) level as long-term predictor of cardiovascular mortality in a large sample of subjects in primary cardiovascular prevention: data from the Brisighella Heart Study. *Eur J Intern Med*. Jan 2017; 37: 49-55. PMID 27553697

87. Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction. *JAMA*. Nov 10 1993; 270(18): 2195-9. PMID 8411602

88. Bolibar I, von Eckardstein A, Assmann G, et al. Short-term prognostic value of lipid measurements inpatients with angina pectoris. The ECAT Angina Pectoris Study Group: European Concerted Action on Thrombosis and Disabilities. *Thromb Haemost*. Dec 2000; 84(6): 955-60. PMID 11154140

89. Clarke R, Peden JE, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. *N Engl J Med*. Dec 24 2009; 361(26): 2518-28. PMID 20032323

90. Shaw LJ, Polk DM, Kahute TA, et al. Prognostic accuracy of B-natriuretic peptide measurements and coronary artery calcium in asymptomatic subjects (from the Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research [EISNER] study). *Am J Cardiol*. Nov 01 2009;104(9): 1245-50. PMID 19840570

91. Wu Z, Pilbrow AP, Liew OW, et al. Circulating cardiac biomarkers improve risk stratification for incident cardiovascular disease in community dwelling populations. *Ebio Medicine*. Aug 2022; 82: 104170. PMID 35850010

92. Melander O, Newton-Cheh C, Almgren P, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. *JAMA*. Jul 01 2009; 302(1): 49-57. PMID 19567439

93. Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. *N Engl J Med*. Feb 12 2004; 350(7): 655-63. PMID 14960742

94. Ito H, Pacold IV, Durazo-Arvizu R, et al. The effect of including cystatin C or creatinine in a cardiovascular risk model for asymptomatic individuals: the multi-ethnic study of atherosclerosis. *Am J Epidemiol.* Oct 15 2011; 174(8): 949-57. PMID 21880578

95. Lee M, Saver JL, Huang WH, et al. Impact of elevated cystatin C level on cardiovascular disease risk in predominantly high cardiovascular risk populations: a meta-analysis. *Circ Cardiovasc Qual Outcomes.* Nov 2010; 3(6): 675-83. PMID 20923994

96. Luo J, Wang LP, Hu HF, et al. Cystatin C and cardiovascular or all-cause mortality risk in the general population: A meta-analysis. *Clin Chim Acta.* Oct 23 2015; 450: 39-45. PMID 26192218

97. Willeit P, Thompson SG, Agewall S, et al. Inflammatory markers and extent and progression of early atherosclerosis: Meta-analysis of individual-participant-data from 20 prospective studies of the PROG-IMT collaboration. *Eur J Prev Cardiol.* Jan 2016; 23(2): 194-205. PMID 25416041

98. Sattar N, Wanamethee G, Sarwar N, et al. Leptin and coronary heart disease: prospective study and systematic review. *J Am Coll Cardiol.* Jan 13 2009; 53(2): 167-75. PMID 19130985

99. Zeng R, Xu CH, Xu YN, et al. Association of leptin levels with pathogenetic risk of coronary heart disease and stroke: a meta-analysis. *Arq Bras Endocrinol Metabol.* Nov 2014; 58(8): 817-23. PMID 25465603

100. Yang H, Guo W, Li J, et al. Leptin concentration and risk of coronary heart disease and stroke: A systematic review and meta-analysis. *PLoS One.* 2017; 12(3): e0166360. PMID 28278178

101. Boekholdt SM, Arsenault BJ, Mora S, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. *JAMA.* Mar 28 2012; 307(12): 1302-9. PMID 22453571

102. Boekholdt SM, Hovingh GK, Mora S, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. *J Am Coll Cardiol.* Aug 05 2014; 64(5): 485-94. PMID 25082583

103. Ballantyne CM, Pitt B, Loscalzo J, et al. Alteration of relation of atherogenic lipoprotein cholesterol to apolipoprotein B by intensive statin therapy in patients with acute coronary syndrome (from the Limiting UNderreatment of lipids in ACS With Rosuvastatin [LUNAR] Trial). *Am J Cardiol.* Feb 15 2013; 111(4):506-9. PMID 23237107

104. Mora S, Glynn RJ, Boekholdt SM, et al. On-treatment non-high-density lipoprotein cholesterol, apolipoprotein B, triglycerides, and lipid ratios in relation to residual vascular risk after treatment with potent statin therapy: JUPITER (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). *J Am Coll Cardiol.* Apr 24 2012; 59(17): 1521-8. PMID 22516441

105. Ray KK, Cannon CP, Cairns R, et al. Prognostic utility of apo B/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. *Arterioscler Thromb Vasc Biol.* Mar 2009; 29(3):424-30. PMID 19122170

106. Osei-Hwedieh DO, Amar M, Sviridov D, et al. Apolipoprotein mimetic peptides: Mechanisms of action as anti-atherogenic agents. *Pharmacol Ther.* Apr 2011; 130(1): 83-91. PMID 21172387

107. Ordovas JM, Mooser V. The APOE locus and the pharmacogenetics of lipid response. *Curr Opin Lipidol.* Apr 2002; 13(2): 113-7. PMID 11891412

108. Sarkkinen E, Korhonen M, Erkkilä A, et al. Effect of apolipoprotein E polymorphism on serum lipid response to the separate modification of dietary fat and dietary cholesterol. *Am J Clin Nutr.* Dec 1998;68(6): 1215-22. PMID 9846849

109. Carmen R, Roederer G, Mailloux H, et al. The response to lovastatin treatment in patients with heterozygous familial hypercholesterolemia is modulated by apolipoprotein E polymorphism. *Metabolism.* Jul 1993; 42(7): 895-901. PMID 8345800

110. Chiodini BD, Franzosi MG, Barlera S, et al. Apolipoprotein E polymorphisms influence effect of pravastatin on survival after myocardial infarction in a Mediterranean population: the GISSI-Prevenzione study. *Eur Heart J.* Aug 2007; 28(16): 1977-83. PMID 17567623

111. Donnelly LA, Palmer CN, Whitley AL, et al. Apolipoprotein E genotypes are associated with lipid-lowering responses to statin treatment in diabetes: a Go-DARTS study. *Pharmacogenet Genomics.* Apr 2008; 18(4): 279-87. PMID 18334912

112. Vossen CY, Hoffmann MM, Hahmann H, et al. Effect of APOE genotype on lipid levels in patients with coronary heart disease during a 3-week inpatient rehabilitation program. *Clin Pharmacol Ther.* Aug 2008; 84(2): 222-7. PMID 18388879

113. Kwiterovich PO. Clinical relevance of the biochemical, metabolic, and genetic factors that influence low-density lipoprotein heterogeneity. *Am J Cardiol.* Oct 17 2002; 90(8A): 30i-47i. PMID 12419479

114. Superko HR, Berneis KK, Williams PT, et al. Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low-density lipoprotein pattern B compared with pattern A. *Am J Cardiol.* Nov 01 2005; 96(9): 1266-72. PMID 16253595

115. Sirtori CR, Calabresi L, Pisciotta L, et al. Effect of statins on LDL particle size in patients with familial combined hyperlipidemia: a comparison between atorvastatin and pravastatin. *Nutr Metab Cardiovasc Dis.* Feb 2005; 15(1): 47-55. PMID 15871851

116. Arca M, Montali A, Pigna G, et al. Comparison of atorvastatin versus fenofibrate in reaching lipid targets and influencing biomarkers of endothelial damage in patients with familial combined hyperlipidemia. *Metabolism.* Nov 2007; 56(11): 1534-41. PMID 17950105

117. Rosenson RS, Wolff DA, Huskin AL, et al. Fenofibrate therapy ameliorates fasting and postprandial lipoproteinemia, oxidative stress, and the inflammatory response in subjects with hypertriglyceridemia and the metabolic syndrome. *Diabetes Care.* Aug 2007; 30(8): 1945-51. PMID 17483155

118. Tokuno A, Hirano T, Hayashi T, et al. The effects of statin and fibrate on lowering small dense LDL-cholesterol in hyperlipidemic patients with type 2 diabetes. *J Atheroscler Thromb.* Jun 2007; 14(3): 128-32. PMID 17587764

119. Miller BD, Alderman EL, Haskell WL, et al. Predominance of dense low-density lipoprotein particles predicts angiographic benefit of therapy in the Stanford Coronary Risk Intervention Project. *Circulation.* Nov 01 1996; 94(9): 2146-53. PMID 8901665

120. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. *N Engl J Med.* Nov 08 1990; 323(19): 1289-98. PMID 2215615

121. Campos H, Moye LA, Glasser SP, et al. Low-density lipoprotein size, pravastatin treatment, and coronary events. *JAMA.* Sep 26 2001; 286(12): 1468-74. PMID 11572739

122. Bays HE, Dujovne CA, McGovern ME, et al. Comparison of once-daily, niacin extended-release/lovastatin with standard doses of atorvastatin and simvastatin (the ADVICOR Versus Other Cholesterol-Modulating Agents Trial Evaluation [ADVOCATE]). *Am J Cardiol.* Mar 15 2003; 91(6): 667-72. PMID 12633795

123. van Wissen S, Smilde TJ, Trip MD, et al. Long term statin treatment reduces lipoprotein(a)concentrations in heterozygous familial hypercholesterolemia. *Heart.* Aug 2003; 89(8): 893-6. PMID 12860867

124. National Institutes of Health, National Heart Lung and Blood Institute. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (NIH Publication No. 01-3670). 2001; <http://www.nhlbi.nih.gov/guidelines/cholesterol/atp3xsum.pdf>. Accessed November 1, 2024.

125. Thompson A, Gao P, Orfei L, et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. *Lancet.* May 01 2010; 375(9725): 1536-44. PMID 20435228

126. Garza CA, Montori VM, McConnell JP, et al. Association between lipoprotein-associated phospholipase A2 and cardiovascular disease: a systematic review. *Mayo Clin Proc.* Feb 2007; 82(2): 159-65. PMID 17290721

127. Antonopoulos AS, Angelopoulos A, Papanikolaou P, et al. Biomarkers of Vascular Inflammation for Cardiovascular Risk Prognostication: A Meta-Analysis. *JACC Cardiovasc Imaging.* Mar 2022; 15(3): 460-471. PMID 34801448

128. Gottlieb SS, Harris K, Todd J, et al. Prognostic significance of active and modified forms of endothelin 1 in patients with heart failure with reduced ejection fraction. *Clin Biochem.* Mar 2015; 48(4-5): 292-6. PMID 25541019

129. Patterson CC, Blankenberg S, Ben-Shlomo Y, et al. Which biomarkers are predictive specifically for cardiovascular or for non-cardiovascular mortality in men? Evidence from the Caerphilly Prospective Study (CaPS). *Int J Cardiol.* Dec 15 2015; 201: 113-8. PMID 26298350

130. Malachias MVB, Jhund PS, Claggett BL, et al. NT-proBNP by Itself Predicts Death and Cardiovascular Events in High-Risk Patients With Type 2 Diabetes Mellitus. *J Am Heart Assoc.* Oct 20 2020; 9(19):e017462. PMID 32964800

131. Schoe A, Schippers EF, Ebmeyer S, et al. Predicting mortality and morbidity after elective cardiac surgery using vasoactive and inflammatory biomarkers with and without the EuroSCORE model. *Chest.* Nov 2014; 146(5): 1310-1318. PMID 24992322

132. Sayılık F, Akbulut T. Temporal relationship between serum calcium and triglyceride-glucose index and its impact on the incident of the acute coronary syndrome: a cross-lagged panel study. *Acta Cardiol.* Jul 2023; 78(5): 586-593. PMID 35969239

133. Mohebi R, van Kimmenade R, McCarthy CP, et al. Performance of a multi-biomarker panel for prediction of cardiovascular event in patients with chronic kidney disease. *Int J Cardiol.* Jan 15 2023; 371: 402-405. PMID 36202172

134. Safo SE, Haine L, Baker J, et al. Derivation of a Protein Risk Score for Cardiovascular Disease Among a Multiracial and Multiethnic HIV+ Cohort. *J Am Heart Assoc.* Jul 04 2023; 12(13): e027273. PMID 37345752

135. Wallentin L, Eriksson N, Olszowka M, et al. Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study. *PLoS Med.* Jan 2021; 18(1):e1003513. PMID 33439866

136. Wuopio J, Hilden J, Bring C, et al. Cathepsin B and S as markers for cardiovascular risk and all-cause mortality in patients with stable coronary heart disease during 10 years: a CLARICOR trial sub-study. *Atherosclerosis.* Nov 2018; 278: 97-102. PMID 30261474

137. Winkel P, Jakobsen JC, Hilden J, et al. Prognostic value of 12 novel cardiological biomarkers in stable coronary artery disease. A 10-year follow-up of the placebo group of the Copenhagen CLARICOR trial. *BMJ Open.* Aug 20 2020; 10(8): e033720. PMID 32819979

138. Welsh P, Kou L, Yu C, et al. Prognostic importance of emerging cardiac, inflammatory, and renal biomarkers in chronic heart failure patients with reduced ejection fraction and anaemia: RED-HF study. *Eur J Heart Fail.* Feb 2018; 20(2): 268-277. PMID 28960777

139. Harari G, Green MS, Magid A, et al. Usefulness of Non-High-Density Lipoprotein Cholesterol as a Predictor of Cardiovascular Disease Mortality in Men in 22-Year Follow-Up. *Am J Cardiol.* Apr 15 2017; 119(8): 1193-1198. PMID 28267961

140. Kunutsor SK, Bakker SJ, James RW, et al. Serum paraoxonase-1 activity and risk of incident cardiovascular disease: The PREVEND study and meta-analysis of prospective population studies. *Atherosclerosis.* Feb 2016; 245: 143-54. PMID 26724525

141. Keller T, Boeckel JN, Groß S, et al. Improved risk stratification in prevention by use of a panel of selected circulating microRNAs. *Sci Rep.* Jul 03 2017; 7(1): 4511. PMID 28674420

142. de Lemos JA, Ayers CR, Levine BD, et al. Multimodality Strategy for Cardiovascular Risk Assessment: Performance in 2 Population-Based Cohorts. *Circulation.* May 30 2017; 135(22): 2119-2132. PMID 28360032

143. Greisenegger S, Segal HC, Burgess AI, et al. Biomarkers and mortality after transient ischemic attack and minor ischemic stroke: population-based study. *Stroke.* Mar 2015; 46(3): 659-66. PMID 25649803

144. Cho S, Lee SH, Park S, et al. The additive value of multiple biomarkers in prediction of premature coronary artery disease. *Acta Cardiol.* Apr 2015; 70(2): 205-10. PMID 26148381

145. Wilsgaard T, Mathiesen EB, Patwardhan A, et al. Clinically significant novel biomarkers for prediction of first ever myocardial infarction: the Tromsø Study. *Circ Cardiovasc Genet.* Apr 2015; 8(2): 363-71. PMID 25613532

146. Guarnera S, Fiorito G, Onland-Moret NC, et al. Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. *Clin Epigenetics.* 2015; 7: 133. PMID 26705428

147. Lara J, Cooper R, Nissan J, et al. A proposed panel of biomarkers of healthy ageing. *BMC Med.* Sep 15 2015; 13: 222. PMID 26373927

148. Paynter NP, Chasman DI, Paré G, et al. Association between a literature-based genetic risk score and cardiovascular events in women. *JAMA.* Feb 17 2010; 303(7): 631-7. PMID 20159871

149. Zethelius B, Berglund L, Sundström J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. *N Engl J Med.* May 15 2008; 358(20): 2107-16. PMID 18480203

150. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. *Circulation*. Jul 13 2004; 110(2): 227-39. PMID15249516

151. National Heart Lung and Blood Institute. Managing Blood Cholesterol in Adults: Systematic Evidence Review From the Cholesterol Expert Panel, 2013. Bethesda, MD: National Heart, Lung, and Blood Institute; 2013. <https://www.nhlbi.nih.gov/sites/default/files/media/docs/cholesterol-in-adults.pdf>. Accessed November 3, 2024.

152. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol*. Jul 01 2014; 63(25 Pt B): 2889-934. PMID 24239923

153. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation*. Jun 24 2014; 129(25 Suppl 2): S49-73. PMID 24222018

154. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *Circulation*. Sep 10 2019; 140(11): e596-e646. PMID30879355

155. Brunzell JD, Davidson M, Furberg CD, et al. Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. *Diabetes Care*. Apr 2008; 31(4): 811-22. PMID 18375431

156. ElSayed NA, Aleppo G, Bannuru RR, et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes-2024. *Diabetes Care*. Jan 01 2024; 47(Suppl 1): S179-S218. PMID38078592

157. Jellinger PS, Handelsman Y, Rosenblit PD, et al. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF DYSLIPIDEMIA AND PREVENTION OF CARDIOVASCULAR DISEASE. *Endocr Pract*. Apr 2017; 23(Suppl 2): 1-87. PMID 28437620

158. Handelsman Y, Jellinger PS, Guerin CK, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Management of Dyslipidemia and Prevention of Cardiovascular Disease Algorithm - 2020 Executive Summary. *Endocr Pract*. Oct2020; 26(10): 1196-1224. PMID 33471721

159. Blonde L, Umpierrez GE, Reddy SS, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. *Endocr Pract*. Oct 2022; 28(10): 923-1049. PMID 35963508

160. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. *Eur Heart J*. Jan 01 2020; 41(1): 111-188. PMID 31504418

161. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. *Eur Heart J*. Sep 07 2021; 42(34): 3227-3337. PMID 34458905

162. Jacobson TA, Ito MK, Maki KC, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1 - executive summary. *J Clin Lipidol*. 2014; 8(5): 473-88. PMID25234560

163. Grundy SM, Stone NJ, Bailey AL, et al. 2018AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *Circulation*. Jun 18 2019; 139(25): e1082-e1143. PMID 30586774

164. Wilson DP, Jacobson TA, Jones PH, et al. Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. *J Clin Lipidol*. 2019; 13(3):374-392. PMID 31147269

165. Wilson PW, Jacobson TA, Martin SS, et al. Lipid measurements in the management of cardiovascular diseases: Practical recommendations a scientific statement from the national lipid association writing group. *J Clin Lipidol*. Published online: September 24, 2021

166.National Institute for Health and Care Excellence (NICE). Cardiovascular disease: risk assessment and reduction, including lipid modification [CG181]. December 2023;
<https://www.nice.org.uk/guidance/ng238>. Accessed November 5, 2024.

Curry SJ, Krist AH, Owens DK, et al. Risk Assessment for Cardiovascular Disease With Nontraditional Risk Factors: US Preventive Services Task Force Recommendation Statement. *JAMA*. Jul 17 2018; 320(3): 272-280. PMID 29998297

CLICK THE ENVELOPE ICON BELOW TO SUBMIT COMMENTS

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice. Blue Cross & Blue Shield of Rhode Island is an independent licensee of the Blue Cross and Blue Shield Association.

500 EXCHANGE STREET, PROVIDENCE, RI 02903-2699
(401) 274-4848 WWW.BCBSRI.COM

MEDICAL COVERAGE POLICY | 19