Medical Coverage Policy | Minimally Invasive Procedures for Back Pain

EFFECTIVE DATE: 02|01|2024 **POLICY LAST REVIEWED:** 11|06|2024

OVERVIEW

This policy addresses a variety of minimally invasive techniques that have been investigated over the years as treatment of low back pain related to disc disease. Surgical management of herniated intervertebral discs most commonly involves discectomy or microdiscectomy, performed manually through an open incision. Automated percutaneous discectomy involves placement of a probe within the intervertebral disc under image guidance with aspiration of disc material using a suction cutting device. Electrothermal intradiscal annuloplasty therapies use radiofrequency energy sources to treat discogenic low back pain arising from annular tears. These annuloplasty techniques are designed to decrease pain arising from the annulus by thermocoagulating nerves in the disc and tightening annular tissue. Laser energy (laser discectomy) and radiofrequency coblation (nucleoplasty) are being evaluated for decompression of the intervertebral disc. For laser discectomy under fluoroscopic guidance, a needle or catheter is inserted into the disc nucleus, and a laser beam is directed through it to vaporize tissue. For disc nucleoplasty, bipolar radiofrequency energy is directed into the disc to ablate tissue.

MEDICAL CRITERIA

Medicare Advantage Plans

Thermal destruction of the intraosseous basivertebral nerve (e.g., Intracept® system) will be considered medically reasonable and necessary for the treatment of chronic low back pain in patients who meet ALL the following criteria:

- 1. Chronic lumbar back pain of ≥6 months duration that causes functional deficit measured on a pain or disability scale*, AND
- 2. Documented failure to respond to ≥ 6 months of non-surgical management^{**}, AND
- 3. Absence of non-vertebrogenic pathology per clinical assessment or radiology studies that could explain the source of the patient's pain, including but not limited to fracture, tumor, infection, or significant deformity, AND
- 4. Evidence of Type 1 or Type 2 Modic changes on MRI, such as inflammation, edema, vertebral endplate changes, disruption and fissuring of the endplate, vascularized fibrous tissues within the adjacent marrow, hypotensive signals (Type 1 Modic change), and changes to the vertebral body marrow including replacement of normal bone marrow by fat, and hypertensive signals (Type 2 Modic change), in 1 or more vertebrae from L3-S1.

* Pain assessment and a disability scale must be obtained at baseline to be used for functional assessment.

** Non-surgical management may include but is not limited to:

- Avoidance of activities that aggravate pain;
- Trial of Chiropractic manipulation
- Trial of Physical Therapy;
- Cognitive support and recovery reassurance;
- Injection therapy epidural and/or facet;
- Spine biomechanics education;
- Specific lumbar exercise program;
- Home use of heat/cold modalities;
- Low impact aerobic exercise as tolerated;

- Pharmacotherapy (e.g., non-narcotic analgesics, NSAIDs, muscle relaxants, neuroleptics, and narcotics).
- 5. Individuals must have undergone careful screening, evaluation, and diagnosis by a multidisciplinary team prior to thermal destruction of the intraosseous BVN (such screening must include psychological, as well as, physical evaluation). Documentation of the history and careful screening must be available in the patient chart if requested.

NOTE: Thermal destruction of the intraosseous BVN must only be performed once per vertebral body from L3-S1 per lifetime. Up to 4 vertebral bodies may be treated during 1 procedure.

Thermal destruction of the intraosseous basivertebral nerve (e.g., Intracept® system) is not covered in the following:

- 1. Skeletally immature patients (≤ 18 years old);
- 2. Severe cardiac or pulmonary compromise;
- 3. Active systemic infection or local infection at the intended treatment level;
- 4. Bleeding diathesis;
- 5. Pregnancy;
- 6. Primary radicular pain into the lower extremities (defined as nerve pain following a dermatomal distribution and that correlates with nerve compression on imaging);
- 7. Previous lumbar/lumbosacral spine surgery at the intended treatment level (with the exception of

discectomy/laminectomy if performed >6 months prior to BVN nerve ablation and radicular pain resolved);

- 8. Primary symptomatic lumbar or lumbosacral spinal stenosis (defined as the presence of neurogenic claudication and confirmed by imaging);
- 9. Diagnosed osteoporosis (T-score of -2.5 or less), spine fragility fracture history, trauma/compression fracture at the intended treatment level, or spinal cancer;
- 10. Radiographic evidence of any of the following that correlates with predominant physical complaints:
 - a. Lumbar/lumbosacral disc extrusion or protrusion >5mm at levels L3-S1;
 - b. Lumbar/lumbosacral spondylolisthesis > 2mm at any level;
 - c. Lumbar/lumbosacral spondylolysis at levels L3-S1;
 - d. Lumbar/lumbosacral facet arthrosis/effusion correlated with facet-mediated pain at levels L3-S1.
- 11. BMI >40;
- 12. Advanced generalized systemic disease that limits quality-of-life (QOL) improvements would require a statement of the objective of treatment in such cases;
- 13. Active, untreated substance abuse disorder.

PRIOR AUTHORIZATION

Prior authorization is required for Medicare Advantage Plans for thermal destruction of the intraosseous basivertebral nerve (e.g., Intracept® system).

POLICY STATEMENT

Medicare Advantage Plans

Thermal destruction of the intraosseous basivertebral nerve (e.g., Intracept® system) will be considered medically necessary when the criteria above have been met.

Commercial Products

The following service is not medically necessary for Commercial Products as the evidence is insufficient to determine that the technology results in an improvement in the net health outcomes:

• Intraosseous radiofrequency ablation of the basivertebral nerve (e.g., Intracept® system) for the treatment of vertebrogenic back pain

Medicare Advantage Plans and Commercial Products

The following services are not covered for Medicare Advantage Plans and not medically necessary for Commercial Products as the evidence is insufficient to determine that the technology results in an improvement in the net health outcomes:

- Percutaneous annuloplasty (e.g., intradiscal electrothermal annuloplasty, intradiscal radiofrequency annuloplasty, or intradiscal biacuplasty) for the treatment of chronic discogenic back pain
- Laser discectomy and radiofrequency coblation (disc nucleoplasty) as techniques of disc decompression and treatment of associated pain.
- Automated percutaneous discectomy as a technique of intervertebral disc decompression in individuals with back pain and/or radiculopathy related to disc herniation in the lumbar, thoracic, or cervical spine.

COVERAGE

Benefits may vary between groups and contracts. Please refer to the appropriate Benefit Booklet, Evidence of Coverage or Subscriber Agreement for applicable not medically necessary/not covered benefits/coverage.

BACKGROUND

Medicare Advantage Plans

Percutaneous thermal intradiscal procedures (TIPs) involve the insertion of a catheter(s)/probe(s) in the spinal disc under fluoroscopic guidance for the purpose of producing or applying heat and/or disruption within the disc to relieve low back pain.

The scope of the Centers for Medicare and Medicaid Services national coverage determination on TIPs includes percutaneous intradiscal techniques that employ the use of a radiofrequency energy source or electrothermal energy to apply or create heat and/or disruption within the disc for coagulation and/or decompression of disc material to treat symptomatic patients with annular disruption of a contained herniated disc, to seal annular tears or fissures, or destroy nociceptors for the purpose of relieving pain. This includes techniques that use single or multiple probe(s)/catheter(s), which utilize a resistance coil or other delivery system technology, are flexible or rigid, and are placed within the nucleus, the nuclear-annular junction, or the annulus.

Although not intended to be an all-inclusive list, TIPs are commonly identified as intradiscal electrothermal therapy (IDET), intradiscal thermal annuloplasty (IDTA), percutaneous intradiscal radiofrequency thermocoagulation (PIRFT), radiofrequency annuloplasty (RA), intradiscal biacuplasty (IDB), percutaneous (or plasma) disc decompression (PDD) or coblation, or targeted disc decompression (TDD). At times, TIPs are identified or labeled based on the name of the catheter/probe that is used (e.g., SpineCath, discTRODE, SpineWand, Accutherm, or TransDiscal electrodes). Each technique or device has its own protocol for application of the therapy.

The Centers for Medicare and Medicaid Services has determined that TIPs are not reasonable and necessary for the treatment of low back pain. Therefore, TIPs, which include procedures that employ the use of a radiofrequency energy source or electrothermal energy to apply or create heat and/or disruption within the disc for the treatment of low back pain, are noncovered. Therefore, these services are not covered for Medicare Advantage Plans.

Low back pain (LBP) is the most expensive occupational disorder in the United States and the leading cause of disability worldwide. Chronic low back pain (cLBP) is defined as persistent pain in the lumbar region lasting for >12 weeks. cLBP has many different etiologies. Research shows evidence that one etiology is associated with degeneration of the vertebral body or vertebral body endplates, resulting in inflammation. The inflammatory response is perceived by the basivertebral nerve (BVN), a sensory nerve that enters the posterior vertebral body and branches out to the superior and inferior endplates. The pain signals are then transmitted to the central nervous system, causing what is known as vertebrogenic pain.

Clinically, vertebrogenic pain is generally described as a midline, deep, aching, burning pain that is progressive. Also, it is often associated with an intermittent electrical shock sensation. Vertebrogenic pain is also characterized by absence of radicular expression, lower extremity weakness, or sensory deficits, and the neural tension sign and pain is generally worse with spinal flexion, sitting, standing and general physical activity, when compared to extension.

Diagnosis of vertebrogenic cLBP focuses on the chronic inflammatory response caused by endplate damage, which is visible on MRI. These signal changes, known as Modic changes (MC), are found in the vertebral body bone marrow that is adjacent to the degenerative endplates. Modic 1 changes indicate inflammation and edema, and Modic 2 changes occur in the setting of marrow ischemia when the red hematopoietic bone marrow has converted into yellow fatty marrow.

Thermal destruction (i.e., ablation) of the intraosseous BVN (Intracept® Procedure) is a therapeutic, interventional surgical procedure used to treat cLBP of vertebrogenic origin. The procedure is performed using fluoroscopic imaging under moderate/conscious sedation or general anesthesia. Radiofrequency energy is applied for 15 minutes at 85 degrees Celsius to produce a lesion to destroy the BVN within the vertebral body. At a minimum, the BVN is ablated in at least 1 vertebral body.

The International Society for the Advancement of Spine Surgery (ISASS) 2020 guideline – Intraosseous Ablation of the Basivertebral Nerve for the Relief of Chronic Low Back Pain concluded that "The procedure is supported by level 1 evidence including 2 RCTs demonstrating a statistically significant decrease in pain and an improvement in function with outcomes sustained to at least 24 months in a limited number of studies." BVN ablation may be indicated as a treatment option for cLBP for patients that fail nonsurgical treatment and their cLBP is diagnosed using well-established clinical and MRI findings.

The American Society of Pain and Neuroscience (ASPN) identified evidence-based guidelines from the available literature for the proper identification and selection of patients with vertebrogenic low back pain for BVN ablation. The systematic review was conducted using United States Preventive Services Task Force Criteria Modified for Interventional Spine Procedures and assigned a Grade A rating of the quality of evidence for BVN ablation indicating a high certainty that the net benefit is substantial in appropriately selected individuals.

Commercial Products

For individuals who have vertebrogenic back pain who receive intraosseous ablation of basivertebral nerves, the evidence includes 2 RCTs (the SMART and INTRACEPT trials). Relevant outcomes are symptoms, functional outcomes, QOL, and treatment-related morbidity. The SMART trial did not find a difference in the Oswestry Disability Index between patients treated with basivertebral nerve ablation or sham control at 3months using an intent-to-treat analysis. Although the per protocol analysis showed a significant difference; results for the per protocol population at 12 months were not significantly different. Additionally, 73% of patients in this trial crossed over to the active treatment group at 12 months and therefore, long-term comparative data are not available. The INTRACEPT trial found a significant difference in the Oswestry Disability Index and other pain scores between patients treated with basivertebral nerve ablation and standard care at 3 months. Comparative data at 6 months post randomization showed similar results. However, 92% of patients initially assigned to standard care elected to cross over to receive early basivertebral nerve ablation, thus, long-term comparative data beyond 6 months are not available. Additional limitations to this RCT include lack of a sham control. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Medicare Advantage Plans and Commercial Products

For individuals who have discogenic back pain who receive intradiscal electrothermal annuloplasty, the evidence includes a small number of randomized controlled trials (RCTs). Relevant outcomes are symptoms, functional outcomes, quality of life (QOL), and treatment-related morbidity. Two RCTs on intradiscal electrothermal annuloplasty reported conflicting results, with 1 reporting benefit for intradiscal electrothermal annuloplasty and the other reporting no benefit. Further study in a sham-controlled trial with a representative population of patients is needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have discogenic back pain who receive intradiscal radiofrequency annuloplasty, the evidence includes 2 RCTs. Relevant outcomes are symptoms, functional outcomes, QOL, and treatment-

related morbidity. Neither RCT found evidence of benefit with the treatment. More sham-controlled trials are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have discogenic back pain who receive intradiscal biacuplasty, the evidence includes 2industry-sponsored RCTs. Relevant outcomes are symptoms, functional outcomes, QOL, and treatment-related morbidity. One trial reported significant improvements at 6 months post-treatment, but not at 1 and 3months. The other trial also showed a significant reduction in visual analog scale scores at 6 months that appeared to continue to the 12-month follow-up; however, it is unclear whether this trial was sufficiently powered. More sham-controlled trials are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have herniated intervertebral disc(s) who receive automated percutaneous discectomy, the evidence includes randomized controlled trials (RCTs) and systematic reviews of observational studies. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The published evidence from small RCTs is insufficient to evaluate the impact of automated percutaneous discectomy on the net health outcome. Well-designed and executed RCTs are needed to determine the benefits and risks of this procedure. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have discogenic back pain or radiculopathy who receive laser discectomy, the evidence includes systematic reviews of observational studies. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. While numerous case series and uncontrolled studies have reported improvements in pain levels and functioning following laser discectomy, the lack of well-designed and conducted controlled trials limits the interpretation of reported data. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have discogenic back pain or radiculopathy who receive disc nucleoplasty with radiofrequency coblation, the evidence includes randomized controlled trials (RCTs), systematic reviews, and prospective and retrospective nonrandomized studies. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. For nucleoplasty, there are 3 RCTs in addition to several uncontrolled studies. These RCTs are limited by the lack of blinding, an inadequate control condition in 1, inadequate data reporting in the second, and low enrollment with early study termination in the third. The available evidence is insufficient to permit conclusions concerning the effect of these procedures on health outcomes due to multiple confounding factors that may bias results. High-quality randomized trials with adequate follow-up (at least 1year), which control for selection bias, the placebo effect, and variability in the natural history of low back pain, are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

CODING

Medicare Advantage Plans and Commercial Products

The following CPT code(s) are covered for Medicare Advantage Plans when medical criteria above have been met and are not medically necessary for Commercial Products.

- **64628** Thermal destruction of intraosseous basivertebral nerve, including all imaging guidance; first 2 vertebral bodies, lumbar or sacral
- **64629** Thermal destruction of intraosseous basivertebral nerve, including all imaging guidance; each additional vertebral body, lumbar or sacral (List separately in addition to code for primary procedure)

The following CPT code(s) are not covered for Medicare Advantage Plans, when identified as Percutaneous Thermal Intradiscal Procedures (TIPs), and not medically necessary for Commercial Products:

- **22526** Percutaneous intradiscal electrothermal annuloplasty, unilateral or bilateral including fluoroscopic guidance; single level
- **22527** Percutaneous intradiscal electrothermal annuloplasty, unilateral or bilateral including fluoroscopic guidance; one or more additional levels (List separately in addition to code for

primary procedure)

The following code(s) are not covered for Medicare Advantage Plans and not medically necessary for Commercial Products:

- **62287** Decompression procedure, percutaneous, of nucleus pulposus of intervertebral disc, any method utilizing needle-based technique to remove disc material under fluoroscopic imaging or other form of indirect visualization, with discography and/or epidural injection(s) at the treated level(s), when performed, single or multiple levels, lumbar
- **S2348** Decompression procedure, percutaneous, of nucleus pulposus of intervertebral disc, using radiofrequency energy, single or multiple levels, lumbar

RELATED POLICIES

Prior Authorization via Web-Based Tool for Procedures

PUBLISHED

Provider Update, January 2025 Provider Update, August/December 2023 Provider Update, November 2022 Provider Update, September 2021 Provider Update, October 2020

REFERENCES:

- Centers for Medicare and Medicaid Services (CMS). National Coverage Determination (NCD) for Laser Procedures (140.5). 1997; https://www.cms.gov/medicare-coveragedatabase/view/ncd.aspx?NCDId=69&ncdver=1&DocID=140.5&bc=gAAAAAgAAAAAA%3D%3.
- Centers for Medicare and Medicaid Services (CMS). National Coverage Determination (NCD) for Thermal Intradiscal Procedures (TIPs) (150.11). 2009;https://www.cms.gov/medicare-coveragedatabase/view/ncd.aspx?NCDId=324.
- 3. Centers for Medicare and Medicaid Services (CMS). Local Coverage Determination (LCD) for Thermal Destruction of The Intraosseous Basivertebral Nerve (BVN) for Vertebrogenic Lower Back Pain (L39420)
- Manchikanti L, Abdi S, Atluri S, et al. An update of comprehensive evidence-based guidelines for interventional techniquesin chronic spinal pain. Part II: guidance and recommendations. Pain Physician. Apr 2013; 16(2 Suppl): S49-283. PMID23615883
- Phan K, Xu J, Schultz K, et al. Full-endoscopic versus micro-endoscopic and open discectomy: A systematic review andmeta-analysis of outcomes and complications. Clin Neurol Neurosurg. Mar 2017; 154: 1-12. PMID 28086154
- Yu P, Qiang H, Zhou J, et al. Percutaneous Transforaminal Endoscopic Discectomy versus Micro-Endoscopic Discectomyfor Lumbar Disc Herniation. Med Sci Monit. Mar 30 2019; 25: 2320-2328. PMID 30927349
- Zhao XM, Yuan QL, Liu L, et al. Is It Possible to Replace Microendoscopic Discectomy with Percutaneous TransforaminalDiscectomy for Treatment of Lumbar Disc Herniation? A Meta-Analysis Based on Recurrence and Revision Rate. JKorean Neurosurg Soc. Jul 2020; 63(4): 477-486. PMID 32380585
- 8. Gadjradj PS, Harhangi BS, Amelink J, et al. Percutaneous Transforaminal Endoscopic Discectomy Versus OpenMicrodiscectomy for Lumbar Disc Herniation: A Systematic Review and Meta-analysis. Spine (Phila Pa 1976). Apr 152021; 46(8): 538-549. PMID 33290374
- Zhao XM, Chen AF, Lou XX, et al. Comparison of Three Common Intervertebral Disc Discectomies in the Treatment of Lumbar Disc Herniation: A Systematic Review and Meta-Analysis Based on Multiple Data. J Clin Med. Nov 08 2022;11(22). PMID 36431083
- Wang SF, Hung SF, Tsai TT, et al. Better Functional Outcome and Pain Relief in the Far-Lateral-Outside-in Percutaneous Endoscopic Transforaminal Discectomy. J Pain Res. 2021; 14: 3927-3934. PMID 35002312

- Rajamani PA, Goparaju P, Kulkarni AG, et al. A 2-Year Outcomes and Complications of Various Techniques of Lumbar Discectomy: A Multicentric Retrospective Study. World Neurosurg. Dec 2021; 156: e319-e328. PMID 34555576
- Jing Z, Li L, Song J. Percutaneous transforaminal endoscopic discectomy versus micro endoscopic discectomy for upper lumbar disc herniation: a retrospective comparative study. Am J Transl Res. 2021; 13(4): 3111-3119. PMID 34017479
- Chen Z, Zhang L, Dong J, et al. Percutaneous Transforaminal Endoscopic Discectomy Versus Microendoscopic Discectomy for Lumbar Disc Herniation: Two-Year Results of a Randomized Controlled Trial. Spine (Phila Pa 1976). Apr15 2020; 45(8): 493-503. PMID 31703056
- Kim CH, Chung CK, Choi Y, et al. The Long-term Reoperation Rate Following Surgery for Lumbar Herniated Intervertebral Disc Disease: A Nationwide Sample Cohort Study With a 10-year Follow-up. Spine (Phila Pa 1976). Oct 01 2019; 44(19): 1382-1389. PMID 30973508
- Ahn Y, Lee SG, Son S, et al. Transforaminal Endoscopic Lumbar Discectomy Versus Open Lumbar Microdiscectomy: A Comparative Cohort Study with a 5-Year Follow-Up. Pain Physician. May 2019; 22(3): 295-304. PMID 31151337
- Akçakaya MO, Yörükoğlu AG, Aydoseli A, et al. Serum creatine phosphokinase levels as an indicator of muscle injury following lumbar disc surgery: Comparison of fully endoscopic discectomy and microdiscectomy. Clin Neurol Neurosurg. Jun 2016; 145: 74-8. PMID 27101087
- Choi KC, Shim HK, Hwang JS, et al. Comparison of Surgical Invasiveness Between Microdiscectomy and 3 Different Endoscopic Discectomy Techniques for Lumbar Disc Herniation. World Neurosurg. Aug 2018; 116: e750-e758. PMID 29787880
- Dai HJ, Zhang X, Wang LT, et al. The effect of percutaneous transforaminal endoscopic discectomy (PTED) on serum inflammatory factors and pain in patients with lumbar disc herniation after surgery. Int J Clin Exp Med 2020;13:597603.
- 19. Krappel FA, Schmitz R, Bauer E, et al. Open or endoscopic nucleotomy?. Orthopadische Praxis 2001;37:1649.
- 20. Tacconi L, Giordan E. Endoscopic transforaminal discectomy vs. far lateral discectomy for extraforaminal disc protrusions: our experience. NeuroQuantology 2019;17:1822.
- Tacconi L, Signorelli F, Giordan E. Is Full Endoscopic Lumbar Discectomy Less Invasive Than Conventional Surgery? A Randomized MRI Study. World Neurosurg. Jun 2020; 138: e867-e875. PMID 32251813
- Tao XZ, Jing L, Li JH. Therapeutic effect of transforaminal endoscopic spine system in the treatment of prolapse of lumbar intervertebral disc. Eur Rev Med Pharmacol Sci. Jul 2018; 22(1 Suppl): 103-110. PMID 30004561
- 23. Wang H, Song Y, Cai L. Effect of percutaneous transforaminal lumbar spine endoscopic discectomy on lumbar disc herniation and its influence on indexes of oxidative stress. Biomed Res 2017;28:.
- 24. Xu G, Zhang C, Zhu K, et al. Endoscopic removal of nucleus pulposus of intervertebral disc on lumbar intervertebral disc protrusion and the influence on inflammatory factors and immune function. Exp Ther Med. Jan 2020; 19(1): 301-307. PMID 31853303
- 25. Pan Z, Ha Y, Yi S, et al. Efficacy of Transforaminal Endoscopic Spine System (TESSYS) Technique in Treating Lumbar Disc Herniation. Med Sci Monit. Feb 18 2016; 22: 530-9. PMID 26887645
- 26. Gibson JNA, Subramanian AS, Scott CEH. A randomised controlled trial of transforaminal endoscopic discectomy vs microdiscectomy. Eur Spine J. Mar 2017; 26(3): 847-856. PMID 27885470
- 27. Hsu HT, Chang SJ, Yang SS, et al. Learning curve of full-endoscopic lumbar discectomy. Eur Spine J. Apr 2013; 22(4): 727-33. PMID 23076645
- Kim MJ, Lee SH, Jung ES, et al. Targeted percutaneous transforaminal endoscopic diskectomy in 295 patients: comparison with results of microscopic diskectomy. Surg Neurol. Dec 2007; 68(6): 623-631. PMID 18053857
- 29. Qu JX, Li QZ, Chen M : Comparative study of PTED and MED for monosegmentnlumbar disc herniation. Chin J Bone Joint Inj 32 : 70-71,2017
- Wang H, Cheng J, Xiao H, et al. Adolescent lumbar disc herniation: experience from a large minimally invasive treatment centre for lumbar degenerative disease in Chongqing, China. Clin Neurol Neurosurg. Aug 2013; 115(8): 1415-9. PMID 23419406

- 31. Zhao W, Li CQ, Zhou Y, Wang J, Zheng WJ : Surgical treatment of thenlumbar disc herniated discs using transforaminal endoscopic surgerynsystem. Orthop J China 20 : 1191-1195, 2012
- Li M, Yang H, Yang Q. Full-Endoscopic Technique Discectomy Versus Microendoscopic Discectomy for the Surgical Treatment of Lumbar Disc Herniation. Pain Physician. 2015; 18(4): 359-63. PMID 26218939
- 33. Sinkemani A, Hong X, Gao ZX, et al. Outcomes of Microendoscopic Discectomy and Percutaneous Transforaminal Endoscopic Discectomy for the Treatment of Lumbar Disc Herniation: A Comparative Retrospective Study. Asian Spine J. Dec 2015; 9(6): 833-40. PMID 26713113
- Song HP, Sheng HF, Xu WX. A case-control study on the treatment of protrusion of lumbar intervertebral disc through PELD and MED. Exp Ther Med. Oct 2017; 14(4): 3708-3712. PMID 29042967
- Tu Z, Li YW, Wang B, et al. Clinical Outcome of Full-endoscopic Interlaminar Discectomy for Singlelevel Lumbar Disc Herniation: A Minimum of 5-year Follow-up. Pain Physician. Mar 2017; 20(3): E425-E430. PMID 28339442
- Li H, Jiang C, Mu X, et al. Comparison of MED and PELD in the Treatment of Adolescent Lumbar Disc Herniation: A 5-Year Retrospective Follow-Up. World Neurosurg. Apr 2018; 112: e255-e260. PMID 29325949
- 37. Chen Z, Zhang L, Dong J, et al. Percutaneous transforaminal endoscopic discectomy compared with microendoscopic discectomy for lumbar disc herniation: 1-year results of an ongoing randomized controlled trial. J Neurosurg Spine. Mar 2018; 28(3): 300-310. PMID 29303469
- 38. Liu T, Zhou Y, Wang J, et al. Clinical efficacy of three different minimally invasive procedures for far lateral lumbar disc herniation. Chin Med J (Engl). Mar 2012; 125(6): 1082-8. PMID 22613535
- Wu XC, Zhou Y, Li CQ. Percutaneous tranforaminal endoscopic discectomy versus microendoscopic discectomy for lumbar disc herniation: a prospective randomized controlled study. J Third Mil Med Univ. 2009;31(9):843-846.
- 40. Yang L, Liao XQ, Zhao XJ, et al. Comparison of surgical outcomes between percutaneous transforaminal endoscopic discectomy and micro-endoscopic discectomy for lumbar disc herniation. China J Endosc. 2015;21(9):962-965
- 41. Li ZY, Guo PG, Han D, et al. Analysis of curative effects and prognosis in different procedures of discectomy for patients with lumbar disc herniation. J Clin Med Pract. 2017;21(15):149-150,158
- 42. Liu HP, Hao DJ, Wang XD, et al. Comparison of two surgeries in treatment of lumbar disc herniation. Chin J Pain Med. 2017;23(6):438-442
- 43. Luo DK, Zhou NX, Zhao HW, et al. Clinical effectiveness of minimally invasive treatment for lumbar disc herniation. Orthopaedics. 2017;8(6):439-444
- 44. Qu JX, Li QZ, Chem M, et al. Comparison of the efficacies between percutaneous transforaminal endoscopic discectomy and microendoscopic discectomy for the treatment of single-segmental lumbar disc herniation. Chin J Bone Jt Inj. 2017;32(1):70-71
- 45. Chen Q, Qin L, Li MW, et al. Comparison of the therapeutic effect of percutaneous transforaminal endoscopic discectomy and posterior discectomy on senile single segmental lumbar disc herniation. Chin J Front Med Sci. 2018;10(2):60-64
- 46. Wu YM, Bai M, Yin HP, et al. Comparison of the efficacies between two kinds of minimally invasive procedures for the treatment of simple lumbar disc herniation. J Pract Orthop. 2018;24(4):357-360
- Belykh E, Giers MB, Preul MC, et al. Prospective Comparison of Microsurgical, Tubular-Based Endoscopic, and Endoscopically Assisted Diskectomies: Clinical Effectiveness and Complications in Railway Workers. World Neurosurg. Jun 2016; 90: 273-280. PMID 26898494
- 48. Garg B, Nagraja UB, Jayaswal A. Microendoscopic versus open discectomy for lumbar disc herniation: a prospective randomised study. J Orthop Surg (Hong Kong). Apr 2011; 19(1): 30-4. PMID 21519072
- 49. Hermantin FU, Peters T, Quartararo L, et al. A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy. J Bone Joint Surg Am. Jul 1999; 81(7): 958-65. PMID 10428127
- 50. Huang TJ, Hsu RW, Li YY, et al. Less systemic cytokine response in patients following micro endoscopic versus open lumbar discectomy. J Orthop Res. Mar 2005; 23(2): 406-11. PMID 15734255

- 51. Hussein M, Abdeldayem A, Mattar MM. Surgical technique and effectiveness of microendoscopic discectomy for large uncontained lumbar disc herniations: a prospective, randomized, controlled study with 8 years of follow-up. Eur Spine J. Sep 2014; 23(9): 1992-9. PMID 24736930
- 52. Martín-Láez R, Martínez-Agüeros JA, Suárez-Fernández D, et al. Complications of endoscopic microdiscectomy using the EASYGO! system: is there any difference with conventional discectomy during the learning-curve period?. Acta Neurochir (Wien). Jun 2012; 154(6): 1023-32. PMID 22446750
- 53. Ohya J, Oshima Y, Chikuda H, et al. Does the microendoscopic technique reduce mortality and major complications in patients undergoing lumbar discectomy? A propensity score-matched analysis using a nationwide administrative database. Neurosurg Focus. Feb 2016; 40(2): E5. PMID 26828886
- 54. Pan L, Zhang P, Yin Q. Comparison of tissue damages caused by endoscopic lumbar discectomy and traditional lumbar discectomy: a randomised controlled trial. Int J Surg. 2014; 12(5): 534-7. PMID 24583364
- 55. Righesso O, Falavigna A, Avanzi O. Comparison of open discectomy with microendoscopic discectomy in lumbar disc herniations: results of a randomized controlled trial. Neurosurgery. Sep 2007; 61(3): 545-9; discussion 549. PMID 17881967
- Ruetten S, Komp M, Merk H, et al. Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine (Phila Pa 1976). Apr 20 2008; 33(9): 931-9. PMID 18427312
- 57. Ruetten S, Komp M, Merk H, et al. Recurrent lumbar disc herniation after conventional discectomy: a prospective, randomized study comparing full-endoscopic interlaminar and transforaminal versus microsurgical revision. J Spinal Disord Tech. Apr 2009; 22(2): 122-9. PMID 19342934
- Sasaoka R, Nakamura H, Konishi S, et al. Objective assessment of reduced invasiveness in MED. Compared with conventional one-level laminotomy. Eur Spine J. May 2006; 15(5): 577-82. PMID 15926058
- Schizas C, Tsiridis E, Saksena J. Microendoscopic discectomy compared with standard microsurgical discectomy for treatment of uncontained or large contained disc herniations. Neurosurgery. Oct 2005; 57(4 Suppl): 357-60; discussion 357-60. PMID 16234685
- 60. Teli M, Lovi A, Brayda-Bruno M, et al. Higher risk of dural tears and recurrent herniation with lumbar micro-endoscopic discectomy. Eur Spine J. Mar 2010; 19(3): 443-50. PMID 20127495
- 61. Ruetten S, Komp M, Merk H, et al. Use of newly developed instruments and endoscopes: full-endoscopic resection of lumbar disc herniations via the interlaminar and lateral transforaminal approach. J Neurosurg Spine. Jun 2007; 6(6): 521-30. PMID 17561740
- Ruetten S, Komp M, Merk H, et al. Full-endoscopic cervical posterior foraminotomy for the operation of lateral disc herniations using 5.9-mm endoscopes: a prospective, randomized, controlled study. Spine (Phila Pa 1976). Apr 20 2008; 33(9): 940-8. PMID 18427313
- 63. Gadjradj PS, Rubinstein SM, Peul WC, et al. Full endoscopic versus open discectomy for sciatica: randomised controlled non-inferiority trial. BMJ. Feb 21 2022; 376: e065846. PMID 35190388
- 64. Ran B, Wei J, Yang J, et al. Quantitative Evaluation of the Trauma of CT Navigation PELD and OD in the Treatment of HLDH: A Randomized, Controlled Study. Pain Physician. Jul 2021; 24(4): E433-E441. PMID 34213868
- 65. Wang F, Guo D, Sun T, et al. A comparative study on short-term therapeutic effects of percutaneous transforaminal endoscopic discectomy and microendoscopic discectomy on lumbar disc herniation. Pak J Med Sci. 2019; 35(2): 426-431. PMID 31086527
- 66. Liu Y, Kim Y, Park CW, et al. Interlaminar Endoscopic Lumbar Discectomy Versus Microscopic Lumbar Discectomy: A Preliminary Analysis of L5-S1 Lumbar Disc Herniation Outcomes in Prospective Randomized Controlled Trials. Neurospine. Dec 2023; 20(4): 1457-1468. PMID 38171312
- Yang X, Zhang S, Su J, et al. Comparison of Clinical and Radiographic Outcomes Between Transforaminal Endoscopic Lumbar Discectomy and Microdiscectomy: A Follow-up Exceeding 5 Years. Neurospine. Mar 2024; 21(1): 303-313. PMID 38317550
- 68. Saghebdoust S, Khadivar F, Ekrami M, et al. Transforaminal Endoscopic Lumbar Diskectomy versus Open Microdiskectomy for Symptomatic Lumbar Disk Herniation: A Comparative Cohort Study on Costs and Long-Term Outcomes. J Neurol Surg A Cent Eur Neurosurg. Oct 25 2023. PMID 37879346

- 69. Wang B, Lü G, Patel AA, et al. An evaluation of the learning curve for a complex surgical technique: the full endoscopic interlaminar approach for lumbar disc herniations. Spine J. Feb 2011; 11(2): 122-30. PMID 21296295
- Tenenbaum S, Arzi H, Herman A, et al. Percutaneous Posterolateral Transforaminal Endoscopic Discectomy: Clinical Outcome, Complications, and Learning Curve Evaluation. Surg Technol Int. Dec 2011; 21: 278-83. PMID 22505002
- Casal-Moro R, Castro-Menéndez M, Hernández-Blanco M, et al. Long-term outcome after microendoscopic diskectomy for lumbar disk herniation: a prospective clinical study with a 5-year followup. Neurosurgery. Jun 2011; 68(6): 1568-75; discussion 1575. PMID 21311384
- Wang M, Zhou Y, Wang J, et al. A 10-year follow-up study on long-term clinical outcomes of lumbar microendoscopic discectomy. J Neurol Surg A Cent Eur Neurosurg. Aug 2012; 73(4): 195-8. PMID 22825836
- 73. National Institute for Health and Care Excellence (NICE). Automated percutaneous mechanical lumbar discectomy-guidance [IPG141]. 2005; http://guidance.nice.org.uk/IPG141/Guidance/pdf/English. Accessed April 17, 2024.
- National Institute for Health and Care Excellence (NICE). Percutaneous interlaminar endoscopic lumbar discectomy for sciatica [IPG555]. 2016; https://www.nice.org.uk/guidance/ipg555. Accessed April 17, 2024.
- National Institute for Health and Care Excellence (NICE). Percutaneous transforaminal endoscopic lumbar discectomy for sciatica [IPG556]. 2016; https://www.nice.org.uk/guidance/ipg556. Accessed April 17, 2024.
- 76. Kreiner DS, Hwang SW, Easa JE, et al. An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. Spine J. Jan 2014; 14(1): 180-91. PMID 24239490
- 77. Chou R, Loeser JD, Owens DK, et al. Interventional therapies, surgery, and interdisciplinary rehabilitation for low back pain: an evidence-based clinical practice guideline from the American Pain Society. Spine (Phila Pa 1976). May 01 2009; 34(10): 1066-77. PMID 19363457
- Sayed D, Grider J, Strand N, et al. The American Society of Pain and Neuroscience (ASPN) Evidence-Based Clinical Guideline of Interventional Treatments for Low Back Pain. J Pain Res. 2022; 15: 3729-3832. PMID 36510616
- 79. Singh V, Manchikanti L, Benyamin RM, et al. Percutaneous lumbar laser disc decompression: a systematic review of current evidence. Pain Physician. 2009; 12(3): 573-88. PMID 19461824
- 80. Singh V, Manchikanti L, Calodney AK, et al. Percutaneous lumbar laser disc decompression: an update of current evidence. Pain Physician. Apr 2013; 16(2 Suppl): SE229-60. PMID 23615885
- 81. Gibson JN, Waddell G. Surgical interventions for lumbar disc prolapse. Cochrane Database Syst Rev. Apr 18 2007; 2007(2): CD001350. PMID 17443505
- Tassi GP. Comparison of results of 500 microdiscectomies and 500 percutaneous laser disc decompression procedures for lumbar disc herniation. Photomed Laser Surg. Dec 2006; 24(6): 694-7. PMID 17199468
- 83. Choy DS. Percutaneous laser disc decompression: an update. Photomed Laser Surg. Oct 2004; 22(5): 393-406. PMID 15671712
- 84. Menchetti PP, Canero G, Bini W. Percutaneous laser discectomy: experience and long term follow-up. Acta Neurochir Suppl. 2011; 108: 117-21. PMID 21107947
- Manchikanti L, Falco FJ, Benyamin RM, et al. An update of the systematic assessment of mechanical lumbar disc decompression with nucleoplasty. Pain Physician. Apr 2013; 16(2 Suppl): SE25-54. PMID 23615886
- 86. Gerszten PC, Smuck M, Rathmell JP, et al. Plasma disc decompression compared with fluoroscopyguided transforaminal epidural steroid injections for symptomatic contained lumbar disc herniation: a prospective, randomized, controlled trial. J Neurosurg Spine. Apr 2010; 12(4): 357-71. PMID 20201654
- Chitragran R, Poopitaya S, Tassanawipas W. Result of percutaneous disc decompression using nucleoplasty in Thailand: a randomized controlled trial. J Med Assoc Thai. Oct 2012; 95 Suppl 10: S198-205. PMID 23451463
- 88. de Rooij J, Harhangi B, Aukes H, et al. The Effect of Percutaneous Nucleoplasty vs Anterior Discectomy in Patients with Cervical Radicular Pain due to a Single-Level Contained Soft-Disc Herniation: A Randomized Controlled Trial. Pain Physician. Nov 2020; 23(6): 553-564. PMID 33185372

- 89. Chen CH, Chiu YP, Ji HR, et al. Analysis of the clinical and radiological outcomes of percutaneous cervical nucleoplasty: A case-control study. PLoS One. 2022; 17(12): e0278883. PMID 36508407
- 90. Bokov A, Skorodumov A, Isrelov A, et al. Differential treatment of nerve root compression pain caused by lumbar disc herniation applying nucleoplasty. Pain Physician. 2010; 13(5): 469-80. PMID 20859316
- 91. Birnbaum K. Percutaneous cervical disc decompression. Surg Radiol Anat. Jun 2009; 31(5): 379-87. PMID 19190848
- 92. Cuellar VG, Cuellar JM, Vaccaro AR, et al. Accelerated degeneration after failed cervical and lumbar nucleoplasty. J Spinal Disord Tech. Dec 2010; 23(8): 521-4. PMID 21131800
- 93. Manchikanti L, Derby R, Benyamin RM, et al. A systematic review of mechanical lumbar disc decompression with nucleoplasty. Pain Physician. 2009; 12(3): 561-72. PMID 19461823
- National Institute for Health and Care Excellence (NICE). Epiduroscopic lumbar discectomy through sacral hiatus for sciatica [IPG570]. 2016; https://www.nice.org.uk/guidance/ipg570. Accessed February 13, 2024.
- 95. National Institute for Health and Care Excellence (NICE). Percutaneous coblation of the intervertebral disc for low back pain and sciatica [IPG543]. 2016; https://www.nice.org.uk/guidance/ipg543. Accessed February 12, 2024.
- 96. North American Spine Society. Clinical guidelines for diagnosis and treatment of lumbar disc herniation with radiculopathy. 2012; https://www.spine.org/Portals/0/Assets/Downloads/ResearchClinicalCare/Guidelines/LumbarDiscH erniation.pdf. Accessed February 13, 2024.
- 97. U.S. Food & Drug Administration. K213836 Intracept Intraosseous Nerve Ablation System 510k Summary. 2022. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K213836. Accessed February 20, 2024.
- 98. Pauza KJ, Howell S, Dreyfuss P, et al. A randomized, placebo-controlled trial of intradiscal electrothermal therapy for the treatment of discogenic low back pain. Spine J. 2004; 4(1): 27-35. PMID 14749191
- 99. Freeman BJ, Fraser RD, Cain CM, et al. A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. Spine (Phila Pa 1976). Nov 01 2005; 30(21): 2369-77; discussion 2378. PMID 16261111
- 100.Barendse GA, van Den Berg SG, Kessels AH, et al. Randomized controlled trial of percutaneous intradiscal radiofrequency thermocoagulation for chronic discogenic back pain: lack of effect from a 90-second 70 C lesion. Spine (Phila Pa 1976). Feb 01 2001; 26(3): 287-92. PMID 11224865
- 101.Kvarstein G, Måwe L, Indahl A, et al. A randomized double-blind controlled trial of intra-annular radiofrequency thermal disc therapy--a 12-month follow-up. Pain. Oct 2009; 145(3): 279-286. PMID 19647940
- 102.Kapural L, Vrooman B, Sarwar S, et al. A randomized, placebo-controlled trial of transdiscal radiofrequency, biacuplasty for treatment of discogenic lower back pain. Pain Med. Mar 2013; 14(3): 362-73. PMID 23279658
- 103.Kapural L, Vrooman B, Sarwar S, et al. Radiofrequency intradiscal biacuplasty for treatment of discogenic lower back pain: a 12-month follow-up. Pain Med. Mar 2015; 16(3): 425-31. PMID 25339501
- 104.Desai MJ, Kapural L, Petersohn JD, et al. A Prospective, Randomized, Multicenter, Open-label Clinical Trial Comparing Intradiscal Biacuplasty to Conventional Medical Management for Discogenic Lumbar Back Pain. Spine (Phila Pa 1976). Jul 01 2016; 41(13): 1065-1074. PMID 26689579
- 105.Desai MJ, Kapural L, Petersohn JD, et al. Twelve-Month Follow-up of a Randomized Clinical Trial Comparing Intradiscal Biacuplasty to Conventional Medical Management for Discogenic Lumbar Back Pain. Pain Med. Apr 01 2017; 18(4): 751-763. PMID 27570246
- 106.Fischgrund JS, Rhyne A, Franke J, et al. Intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: a prospective randomized double-blind sham-controlled multi-center study. Eur Spine J. May 2018; 27(5): 1146-1156. PMID 29423885
- 107.Fischgrund JS, Rhyne A, Franke J, et al. Intraosseous Basivertebral Nerve Ablation for the Treatment of Chronic Low Back Pain: 2-Year Results From a Prospective Randomized Double-Blind Sham-Controlled Multicenter Study. Int J Spine Surg. Apr 2019; 13(2): 110-119. PMID 31131209
- 108.Fischgrund JS, Rhyne A, Macadaeg K, et al. Long-term outcomes following intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 5-year treatment arm results from a

prospective randomized double-blind sham-controlled multi-center study. Eur Spine J. Aug 2020; 29(8): 1925-1934. PMID 32451777

- 109.Khalil JG, Smuck M, Koreckij T, et al. A prospective, randomized, multicenter study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain. Spine J. Oct 2019; 19(10): 1620-1632. PMID 31229663
- 110.Smuck M, Khalil J, Barrette K, et al. Prospective, randomized, multicenter study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 12-month results. Reg Anesth Pain Med. Aug 2021; 46(8): 683-693. PMID 34031220
- 111.Koreckij T, Kreiner S, Khalil JG, et al. Prospective, randomized, multicenter study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 24-Month treatment arm results. N Am Spine Soc J. Dec 2021; 8: 100089. PMID 35141653
- 112.Boswell MV, Trescot AM, Datta S, et al. Interventional techniques: evidence-based practice guidelines in the management of chronic spinal pain. Pain Physician. Jan 2007; 10(1): 7-111. PMID 17256025
- 113.Lorio M, Clerk-Lamalice O, Rivera M, et al. ISASS Policy Statement 2022: Literature Review of Intraosseous Basivertebral Nerve Ablation. Int J Spine Surg. Dec 2022; 16(6): 1084-1094. PMID 36266051
- 114.National Institute for Health and Care Excellence. Percutaneous intradiscal radiofrequency treatment of the intervertebral disc nucleus for low back pain [IPG545]. 2016; https://www.nice.org.uk/guidance/ipg545. Accessed February 19, 2024.
- 115.National Institute for Health and Care Excellence. Percutaneous electrothermal treatment of the intervertebral disc annulus for low back pain and sciatica [IPG544]. 2016; https://www.nice.org.uk/guidance/IPG544. Accessed February 20, 2024.

- CLICK THE ENVELOPE ICON BELOW TO SUBMIT COMMENTS

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice. Blue Cross & Blue Shield Association.

