OVERVIEW
Computer-assisted navigation (CAN) in orthopedic procedures describes the use of computer-enabled tracking systems to facilitate alignment in a variety of surgical procedures, including fixation of fractures, ligament reconstruction, osteotomy, tumor resection, preparation of the bone for joint arthroplasty, and verification of the intended implant placement.

MEDICAL CRITERIA
Not applicable

PRIOR AUTHORIZATION
Not applicable

POLICY STATEMENT
BlueCHiP for Medicare and Commercial Products
Computer-assisted musculoskeletal surgical navigational orthopedic procedures are covered services but providers will not be separately reimbursed for the services.

COVERAGE
Benefits may vary between groups/contracts. Please refer to the appropriate Evidence of Coverage, Subscriber Agreement, or Benefit Booklet for limitations of benefits/coverage for applicable surgery services.

BACKGROUND
COMPUTER-ASSISTED NAVIGATION
The goal of computer-assisted navigation (CAN) is to increase surgical accuracy and reduce the chance of malposition. In addition to reducing the risk of substantial malalignment, CAN may improve soft tissue balance and patellar tracking. CAN is also being investigated for surgical procedures with limited visibility such as placement of the acetabular cup in total hip arthroplasty, resection of pelvic tumors, and minimally invasive orthopedic procedures. Other potential uses of CAN for surgical procedures of the appendicular skeleton include screw placement for fixation of femoral neck fractures, high tibial osteotomy, and tunnel alignment during reconstruction of the anterior cruciate ligament.

CAN devices may be image-based or non-image-based. Image-based devices use preoperative computed tomography (CT) scans and operative fluoroscopy to direct implant positioning. Newer nonimage-based devices use information obtained in the operating room, typically with infrared probes. For TKA, specific anatomic reference points are made by fixing signaling transducers with pins into the femur and tibia. Signal-emitting cameras (e.g., infrared) detect the reflected signals and transmit the data to a dedicated computer. During the surgery, multiple surface points are taken from the distal femoral surfaces, tibial plateaus, and medial and lateral epicondyles. The femoral head center is typically calculated by kinematic methods that involve movement of the thigh through a series of circular arcs, with the computer producing a 3-dimensional (3D) model that includes the mechanical, transepicondylar, and tibial rotational axes. CAN systems direct the positioning of the cutting blocks and placement of the prosthetic implants based on the digitized surface points and model of the bones in space. The accuracy of each step of the operation (cutting block placement, saw cut accuracy, seating of the implants) can be verified, thereby allowing adjustments to be made during surgery.
Navigation involves three steps: data acquisition, registration, and tracking.

Data Acquisition
Data can be acquired in three ways: fluoroscopically, guided by computed tomography scan or magnetic resonance imaging, or guided by imageless systems. These data are then used for registration and tracking.

Registration
Registration refers to the ability of relating images (i.e., radiographs, computed tomography scans, magnetic resonance imaging, or patients’ 3D anatomy) to the anatomic position in the surgical field. Registration techniques may require the placement of pins or “fiduciary markers” in the target bone. A surface-matching technique can also be used in which the shapes of the bone surface model generated from preoperative images are matched to surface data points collected during surgery.

Tracking
Tracking refers to the sensors and measurement devices that can provide feedback during surgery regarding the orientation and relative position of tools to bone anatomy. For example, optical or electromagnetic trackers can be attached to regular surgical tools, which then provide real-time information of the position and orientation of tool alignment with respect to the bony anatomy of interest.

VERASENSE (OrthoSense) is a single-use device that replaces the standard plastic tibial trial spacer used in TKA. The device contains microprocessor sensors that quantify load and contact position of the femur on the tibia after resections have been made. The wireless sensors send the data to a graphic user interface that depicts the load. The device is intended to provide quantitative data on the alignment of the implant and on soft tissue balancing in place of intraoperative “feel.”

iASSIST (Zimmer) is an accelerometer-based alignment system with a user interface built into disposable electronic pods that attach onto the femoral and tibial alignment and resection guides. For the tibia, the alignment guide is fixed between the tibial spines and a claw on the malleoli. The relation between the electronic pod of the digitizer and the bone reference is registered by moving the limb into abduction, adduction, and neutral position. Once the information has been registered, the digitizer is removed and the registration data are transferred to the electronic pod on the cutting guide. The cutting guide can be adjusted for varus/valgus alignment and tibial slope. A similar process is used for the femur. The pods use wireless exchange of data and display the alignment information to the surgeon within the surgical field. A computer controller must also be present in the operating room.

REGULATORY STATUS
Because computer-assisted navigation (CAN) is a surgical information system in which the surgeon is only acting on the information that is provided by the navigation system, surgical navigation systems generally are subject only to 510(k) clearance from the U.S. Food and Drug Administration (FDA). As such, the FDA does not require data documenting the intermediate or final health outcomes associated with CAN. (In contrast, robotic procedures, in which the actual surgery is robotically performed, are subject to the more rigorous requirement of the premarket approval application process.)

A variety of surgical navigation procedures have been cleared for marketing by the FDA through the 510(k) process with broad labeled indications. For example, The OEC FluoroTrak 9800 plus is marketed for locating anatomic structures anywhere on the human body.

Several navigation systems (e.g., PiGalileo™ Computer-Assisted Orthopedic Surgery System, PLUS Orthopedics; OrthoPilot® Navigation System, Braun; Navitrack® Navigation System, ORTHOsoft) have received the FDA clearance specifically for total knee arthroplasty. FDA-cleared indications for the PiGalileo™ system are representative. This system “is intended to be used in computer-assisted orthopedic surgery to aid the surgeon with bone cuts and implant positioning during joint replacement. It provides
information to the surgeon that is used to place surgical instruments during surgery using anatomical landmarks and other data specifically obtained intraoperatively (eg, ligament tension, limb alignment). Examples of some surgical procedures include but are not limited to:

- Total knee replacement supporting both bone referencing and ligament balancing techniques
- Minimally invasive total knee replacement.”

In 2013, the VERASENSE™ Knee System (OrthoSensor) and the iASSIST™ Knee (Zimmer) were cleared for marketing by FDA through the 510(k) process.

CODING
BlueCHiP for Medicare and Commercial Products
The following codes are covered and providers will not be separately reimbursed:

- **20985** Computer-assisted surgical navigational procedure for musculoskeletal procedures; image-less (List separately in addition to code for primary procedure)
- **0054T** Computer-assisted musculoskeletal surgical navigational orthopedic procedure, with image guidance based on fluoroscopic images (List separately in addition to code for primary procedure)
- **0055T** Computer-assisted musculoskeletal surgical navigational orthopedic procedure, with image guidance based on CT/MRI images (List separately in addition to code for primary procedure)
- **0396T** Intra-operative use of kinetic balance sensor for implant stability during knee replacement arthroplasty (List separately in addition to code for primary procedure)
- **S2900** Surgical techniques requiring use of robotic surgical system (list separately in addition to code for primary procedure)

RELATED POLICIES
New Technology
Non-Reimbursable Health Service Codes

PUBLISHED
Provider Update, April 2020
Provider Update, June 2018
Provider Update, August 2017
Provider Update, January 2017
Provider Update, August 2015
Provider Update, January 2015
Provider Update, June 2013

REFERENCES