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OVERVIEW
Whole exome sequencing (WES) sequences the portion of the genome that contains protein-coding DNA, 
while whole genome sequencing (WGS) sequences both coding and noncoding regions of the genome. Whole 
exome sequencing and WGS have been proposed for use in patients presenting with disorders and anomalies 
not explained by a standard clinical workup. Potential candidates for WES and WGS include patients who 
present with a broad spectrum of suspected genetic conditions. 

The following test(s) are addressed in this policy: 
 Genomic Unity® Exome Plus Analysis – Proband (Variantyx, Inc.) CPT code 0214U
 Genomic Unity® Exome Plus Analysis – Comparator (Variantyx, Inc.) CPT code 0215U

MEDICAL CRITERIA 
Medicare Advantage Plans and Commercial Products 
Genomic Unity® Exome Plus Analysis – Proband (CPT code 0214U) and Genomic Unity® Exome Plus 
Analysis – Comparator (CPT code 0215U) 

Standard whole exome sequencing, with trio testing when possible (see guidelines below*), may be 
considered medically necessary for the evaluation of unexplained congenital or neurodevelopmental 
disorders in children when ALL of the following criteria are met: 

1. Documentation that the individual has been evaluated by a clinician with expertise in clinical genetics,
including at minimum a family history and phenotype description, and counseled about the potential
risks of genetic testing.

2. There is potential for a change in management and clinical outcome for the individual being tested.
3. A genetic etiology is considered the most likely explanation for the phenotype despite previous genetic

testing (eg, chromosomal microarray analysis and/or targeted single-gene testing), OR when previous
genetic testing has failed to yield a diagnosis, and the affected individual is faced with invasive
procedures or testing as the next diagnostic step (eg, muscle biopsy).

Rapid whole exome sequencing or rapid whole genome sequencing, with trio testing when possible (see 
guidelines below*), may be considered medically necessary for the evaluation of critically ill infants in 
neonatal or pediatric intensive care with a suspected genetic disorder of unknown etiology when BOTH of the 
following criteria are met: 

1. At least one of the following criteria is met:
a. Multiple congenital anomalies (see Policy Guidelines);
b. An abnormal laboratory test or clinical features suggests a genetic disease or complex

metabolic phenotype (see Policy Guidelines);
c. An abnormal response to standard therapy for a major underlying condition.

2. None of the following criteria apply regarding the reason for admission to intensive care:
a. An infection with normal response to therapy;
b. Isolated prematurity;
c. Isolated unconjugated hyperbilirubinemia;
d. Hypoxic Ischemic Encephalopathy;
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e. Confirmed genetic diagnosis explains illness; 
f. Isolated Transient Neonatal Tachypnea; or 
g. Nonviable neonates. 

*Trio Testing 
The recommended option for testing when possible is testing of the child and both parents (trio testing). Trio 
testing increases the chance of finding a definitive diagnosis and reduces false-positive findings. 
 
Trio testing is preferred whenever possible but should not delay testing of a critically ill individual when rapid 
testing is indicated. Testing of one available parent should be done if both are not immediately available and 
one or both parents can be done later if needed. 

PRIOR AUTHORIZATION  
Medicare Advantage Plans and Commercial Products 
Prior authorization is required for Medicare Advantage Plans and recommended for Commercial Products 
for the following Proprietary Laboratory Analyses (PLA) tests:  

 Genomic Unity® Exome Plus Analysis – Proband CPT code 0214U 
 Genomic Unity® Exome Plus Analysis – Comparator CPT code 0215U 

 
Note: Laboratories are not allowed to obtain clinical authorization or participate in the authorization process 
on behalf of the ordering physician. Only the ordering physician shall be involved in the authorization, appeal 
or other administrative processes related to prior authorization/medical necessity.  
 
In no circumstance shall a laboratory or a physician/provider use a representative of a laboratory or anyone 
with a relationship to a laboratory and/or a third party to obtain authorization on behalf of the ordering 
physician, to facilitate any portion of the authorization process or any subsequent appeal of a claim where the 
authorization process was not followed and/or a denial for clinical appropriateness was issued, including any 
element of the preparation of necessary documentation of clinical appropriateness. If a laboratory or a third 
party is found to be supporting any portion of the authorization process, BCBSRI will deem the action a 
violation of this policy and severe action will be taken up to and including termination from the BCBSRI 
provider network. If a laboratory provides a laboratory service that has not been authorized, the service will 
be denied as the financial liability of the participating laboratory and may not be billed to the member. 
 
POLICY STATEMENT 
Medicare Advantage Plans and Commercial Products 
The following Proprietary Laboratory Analyses (PLA) tests may be considered medically necessary when the 
medical criteria above have been met: 

 Genomic Unity® Exome Plus Analysis – Proband CPT code 0214U 
 Genomic Unity® Exome Plus Analysis – Comparator CPT code 0215U 

 
The following are not covered for Medicare Advantage Plans and not medically necessary for Commercial 
Products as the evidence is insufficient to determine that the technology results in an improvement in the net 
health outcomes: 

 Whole exome sequencing for the diagnosis of genetic disorders in all other situations. 
 Repeat whole exome sequencing for the diagnosis of genetic disorders, including re-analysis of 

previous test results 
 Whole genome sequencing for the diagnosis of genetic disorders in all other situations. 
 Whole exome sequencing and whole genome sequencing for screening for genetic disorders. 

 
Commercial Products 
Some genetic testing services are not covered and a contract exclusion for any self-funded group that has 
excluded the expanded coverage of biomarker testing related to the state mandate, R.I.G.L. §27-19-
81 described in the Biomarker Testing Mandate policy. For these groups, a list of which genetic testing 
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services are covered with prior authorization, are not medically necessary or are not covered because they are 
a contract exclusion can be found in the Coding section of the Genetic Testing Services or Proprietary 
Laboratory Analyses policies. Please refer to the appropriate Benefit Booklet to determine whether the 
member’s plan has customized benefit coverage. Please refer to the list of Related Policies for more 
information.  
 
COVERAGE 
Benefits may vary between groups and contracts. Please refer to the appropriate Benefit Booklet, Evidence of 
Coverage or Subscriber Agreement for applicable benefits/coverage.  
 
BACKGROUND 
Whole Exome Sequencing and Whole Genome Sequencing 
Whole exome sequencing (WES) is targeted next-generation sequencing (NGS) of the subset of the human 
genome that contains functionally important sequences of protein-coding DNA, while whole genome 
sequencing (WGS) uses NGS techniques to sequence both coding and noncoding regions of the genome.  
 
Whole exome sequencing and WGS have been proposed for use in patients presenting with disorders and 
anomalies not explained by a standard clinical workup. Potential candidates for WES and WGS include patients 
who present with a broad spectrum of suspected genetic conditions. 
 
Given the variety of disorders and management approaches, there are a variety of potential health outcomes 
from a definitive diagnosis. In general, the outcomes of a molecular genetic diagnosis include (1) impacting the 
search for a diagnosis, (2) informing follow-up that can benefit a child by reducing morbidity, and (3) affecting 
reproductive planning for parents and potentially the affected patient. 
 
The standard diagnostic workup for patients with suspected Mendelian disorders may include combinations of 
radiographic, electrophysiologic, biochemical, biopsy, and targeted genetic evaluations.1, The search for a 
diagnosis may thus become a time-consuming and expensive process. 
 
Whole Exome Sequencing and Whole Genome Sequencing Technology 
Whole exome sequencing or WGS using NGS technology can facilitate obtaining a genetic diagnosis in patients 
efficiently. Whole exome sequencing is limited to most of the protein-coding sequence of an individual (»85%), 
is composed of about 20,000 genes and 180,000 exons (protein-coding segments of a gene), and constitutes 
approximately 1% of the genome. It is believed that the exome contains about 85% of heritable disease-causing 
variants. Whole exome sequencing has the advantage of speed and efficiency relative to Sanger sequencing of 
multiple genes. Whole exome sequencing shares some limitations with Sanger sequencing. For example, it will 
not identify the following: intronic sequences or gene regulatory regions; chromosomal changes; large deletions; 
duplications; or rearrangements within genes, nucleotide repeats, or epigenetic changes. Whole genome 
sequencing uses techniques similar to WES but includes noncoding regions. Whole genome sequencing has a 
greater ability to detect large deletions or duplications in protein-coding regions compared with WES but 
requires greater data analytics. 
 
Technical aspects of WES and WGS are evolving, including the development of databases such as the National 
Institutes of Health’s ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/) to catalog variants, uneven 
sequencing coverage, gaps in exon capture before sequencing, and difficulties with narrowing the large initial 
number of variants to manageable numbers without losing likely candidate disease-associated variants. The 
variability contributed by the different platforms and procedures used by different clinical laboratories offering 
exome sequencing as a clinical service is unknown. 
 
In 2013, the American College of Medical Genetics and Genomics, Association for Molecular Pathology, and 
College of American Pathologists convened a workgroup to standardize terminology for describing sequence 
variants. In 2015, guidelines developed by this workgroup describe criteria for classifying pathogenic and benign 
sequence variants based on 5 categories of data: pathogenic, likely pathogenic, uncertain significance, likely 
benign, and benign. 
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Regulatory Status 
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; 
laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement 
Amendments (CLIA). Whole exome sequencing or WGS tests as a clinical service are available under the 
auspices of the CLIA. Laboratories that offer laboratory-developed tests must be licensed by the CLIA for 
high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any 
regulatory review of this test. 

For individuals who are children who are not critically ill with multiple unexplained congenital anomalies or a 
neurodevelopmental disorder of unknown etiology following a standard workup who receive whole exome 
sequencing (WES) with trio testing when possible, the evidence includes large case series and within-subject 
comparisons. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision 
making, and resource utilization. Patients who have multiple congenital anomalies or a developmental disorder 
with a suspected genetic etiology, but whose specific genetic alteration is unclear or unidentified by a standard 
clinical workup, may be left without a clinical diagnosis of their disorder, despite a lengthy diagnostic workup. 
For a substantial proportion of these patients, WES may return a likely pathogenic variant. Several large and 
smaller series have reported diagnostic yields of WES ranging from 25% to 60%, depending on the individual’s 
age, phenotype, and previous workup. One comparative study found a 44% increase in yield compared with 
standard testing strategies. Many of the studies have also reported changes in patient management, including 
medication changes, discontinuation of or additional testing, ending the diagnostic odyssey, and family 
planning. The evidence is sufficient to determine that the technology results in an improvement in the net 
health outcome. 

For individuals who are children with a suspected genetic disorder other than multiple congenital anomalies or 
a neurodevelopmental disorder of unknown etiology following a standard workup who receive WES with trio 
testing when possible, the evidence includes small case series and prospective research studies. Relevant 
outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource 
utilization. There is an increasing number of reports evaluating the use of WES to identify a molecular basis 
for disorders other than multiple congenital anomalies or neurodevelopmental disorders. The diagnostic yields 
in these studies range from as low as 3% to 60%. Some studies have reported on the use of a virtual gene panel 
with restricted analysis of disease-associated genes, and WES data allow reanalysis as new genes are linked to 
the patient phenotype. Overall, a limited number of patients have been studied for any specific disorder, and 
clinical use of WES for these disorders is at an early stage with uncertainty about changes in patient 
management. The evidence is insufficient to determine that the technology results in an improvement in the 
net health outcome. 

For individuals who have previously received WES who receive repeat WES, including re-analysis of previous 
test results, the evidence includes nonrandomized studies and a systematic review. Relevant outcomes are test 
validity, functional outcomes, changes in reproductive decision making, and resource utilization. There is no 
direct evidence of clinical utility. In a meta-analysis of nonrandomized studies, re-analysis of WES data 
resulted in an 11% increase in diagnostic yield (95% confidence interval (CI), 8% to 14%) in individuals who 
were previously undiagnosed via WES. Three nonrandomized studies published after the meta-analysis had 
findings consistent with the meta-analysis. Conclusions were limited by heterogeneity across individual studies 
and a lack of detailed reporting on reasons for new diagnoses, changes in management based on new 
diagnoses, and the frequency of the identification of variants of uncertain significance (VUS). Therefore, a 
chain of evidence for clinical utility cannot be established. Additionally, the optimal timing of re-analysis has 
not been established, and there are no clear guidelines on what factors should prompt the decision to repeat 
testing. The evidence is insufficient to determine that the technology results in an improvement in the net 
health outcome. 

For individuals who are children who are not critically ill with multiple unexplained congenital anomalies or a 
neurodevelopmental disorder of unknown etiology following a standard workup or WES who receive whole 
genome sequencing (WGS) with trio testing when possible, the evidence includes nonrandomized studies and 



  

500 EXCHANGE STREET, PROVIDENCE, RI 02903-2699 MEDICAL COVERAGE POLICY | 5 
(401) 274-4848   WWW.BCBSRI.COM 

 

a systematic review. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision 
making, and resource utilization. In studies of children with congenital anomalies and developmental delays of 
unknown etiology following standard clinical workup, the yield of WGS has ranged between 20% and 40%. A 
majority of studies described methods for interpretation of WGS indicating that only pathogenic or likely 
pathogenic variants were included in the diagnostic yield and that VUS were frequently not reported. In a 
systematic review, the pooled (9 studies, N=648) diagnostic yield of WGS was 40% (95% CI, 32% to 49%). 
Although the diagnostic yield of WGS is at least as high as WES in individuals without a diagnosis following 
standard clinical workup, it is unclear if the additional yield results in actionable clinical management changes 
that improve health outcomes. Further, while reporting practices of VUS found on exome and genome 
sequencing vary across laboratories, WGS results in the identification of more VUS than WES. The clinical 
implications of this difference are uncertain as more VUS findings can be seen as potential for future VUS 
reclassification allowing a diagnosis. However, most VUS do not relate to the patient phenotype, the occurrence 
of medical mismanagement and patient stress based on misinterpretation of VUS is not well defined, and 
provider reluctance to interpret VUS information lessen the value of additional VUS identification by WGS. 
As such, higher yield and higher VUS from WGS currently have limited clinical utility. The evidence is 
insufficient to determine that the technology results in an improvement in the net health outcome. 

For individuals who are children with a suspected genetic disorder other than multiple unexplained congenital 
anomalies or a neurodevelopmental disorder of unknown etiology following a standard workup who receive 
WGS with trio testing when possible, the evidence includes case series. Relevant outcomes are test validity, 
functional outcomes, changes in reproductive decision making, and resource utilization. Whole genome 
sequencing has also been studied in other genetic conditions with yield ranging from 9% to 55%. Overall, a 
limited number of patients have been studied for any specific disorder, and clinical use of WGS as well as 
information regarding meaningful changes in management for these disorders is at an early stage. The evidence 
is insufficient to determine that the technology results in an improvement in the net health outcome. 

For individuals who are critically ill infants with a suspected genetic disorder of unknown etiology following a 
standard workup who receive rapid WGS (rWGS) or rapid WES (rWES) with trio testing when possible, the 
evidence includes randomized controlled trials (RCTs) and case series. Relevant outcomes are test validity, 
functional outcomes, changes in reproductive decision making, and resource utilization. One RCT comparing 
rWGS with standard genetic tests to diagnose suspected genetic disorders in critically ill infants was terminated 
early due to loss of equipoise. The rate of genetic diagnosis within 28 days of enrollment was higher for rWGS 
versus standard tests (31% vs. 3%; p=.003). Changes in management due to test results were reported in 41% 
(p=.11) of rWGS versus 21% of control patients; however, 73% of control subjects received broad genetic tests 
(eg, next-generation sequencing panel testing, WES, or WGS) as part of standard testing. A second RCT 
compared rWGS to rWES in seriously ill infants with diseases of unknown etiology from the neonatal intensive 
care unit, pediatric intensive care unit, and cardiovascular intensive care unit. The diagnostic yield of rWGS and 
rWES was similar (19% vs. 20%, respectively), as was time to result (median, 11 vs. 11 days). The NICUSeq 
RCT compared rWGS (test results returned in 15 days) to a delayed reporting group (WGS with test results 
returned in 60 days) in 354 infants admitted to an intensive care unit with a suspected genetic disease. Diagnostic 
yield was higher in the rWGS group (31.0%; 95% CI, 25.5% to 38.7% vs. 15.0%; 95% CI, 10.2% to 21.3%). 
Additionally, significantly more infants in the rWGS group had a change in management compared with the 
delayed arm (21.1% vs. 10.3%; p=.009; odds ratio, 2.3; 95% CI, 1.22 to 4.32). Several retrospective and 
prospective studies including more than 800 critically ill infants and children in total have reported on diagnostic 
yield for rWGS or rWES. These studies included phenotypically diverse but critically ill infants and had yields 
of between 30% and 60% for pathogenic or likely pathogenic variants. Studies have also reported associated 
changes in patient management for patients receiving a diagnosis from rWGS or rWES, including avoidance of 
invasive procedures, medication changes to reduce morbidity, discontinuation of or additional testing, and 
initiation of palliative care or reproductive planning. A chain of evidence linking meaningful improvements in 
diagnostic yield and changes in management expected to improve health outcomes supports the clinical value 
of rWGS or rWES. The evidence is sufficient to determine that the technology results in an improvement in 
the net health outcome. 

CODING 
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Medicare Advantage Plans and Commercial Products 
The following CPT code(s) are covered for Medicare Advantage Plans and Commercial Products when medical 
criteria above are met: 

This code can be used for Genomic Unity® Exome Plus Analysis – Proband (Variantyx, Inc.) 
0214U Rare diseases (constitutional/heritable disorders), whole exome and mitochondrial DNA sequence 

analysis, including small sequence changes, deletions, duplications, short tandem repeat gene 
expansions, and variants in non-uniquely mappable regions, blood or saliva, identification and 
categorization of genetic variants, proband 

 
This code can be used for Genomic Unity® Exome Plus Analysis – Comparator (Variantyx, Inc.) 
0215U Rare diseases (constitutional/heritable disorders), whole exome and mitochondrial DNA sequence 

analysis, including small sequence changes, deletions, duplications, short tandem repeat gene 
expansions, and variants in non-uniquely mappable regions, blood or saliva, identification and 
categorization of genetic variants, each comparator exome (eg, parent, sibling) 

 
RELATED POLICIES 
Biomarker Testing Mandate  
Proprietary Laboratory Analyses (PLA) 
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