DRAFT Medical Coverage Policy | Gene Expression Profiling and Protein Biomarkers for Prostate Cancer Management

EFFECTIVE DATE: 09 | 01 | 2025

POLICY LAST REVIEWED: 05 | 07 | 2025

OVERVIEW

Gene expression profile analysis and protein biomarkers have been proposed as a means to risk-stratify patients with prostate cancer to guide treatment decisions. These tests are intended to be used either on prostate needle biopsy tissue to guide management decisions for active surveillance or therapeutic intervention, to guide radiotherapy use after radical prostatectomy (RP), or to guide medication selection after progression in metastatic castration-resistant prostate cancer.

The following test(s) are addressed in this policy:

• ProMark (Metamark Genetics), CPT 81479

MEDICAL CRITERIA

Medicare Advantage Plans and Commercial Products

Effective 9/1/2025, the following test(s) are considered medically necessary when the medical criteria in the online authorization tool for participating providers is met:

- Decipher Prostate Genomic Classifier (Veracyte, Inc.), CPT Code 81542
- Genomic Prostate Score® (GPS) Test, MDxHealth, Inc, CPT Code 0047U
- Oncotype DX AR-V7 Nuclear Detect (Genomic Health), CPT Code 81479
- Prolaris (Myriad), CPT Code 81541

PRIOR AUTHORIZATION

Prior authorization is required for Medicare Advantage Plans and recommended for Commercial Products for and is obtained via the online tool for participating providers for the following test(s):

- Decipher Prostate Genomic Classifier
- Genomic Prostate Score® (GPS) Test
- Oncotype DX AR-V7 Nuclear Detect
- Prolaris

There is no specific CPT coding for some testing referenced in this policy. Therefore, an Unlisted CPT code should be used (See Coding Section for details). All Unlisted genetic testing CPT codes require prior authorization to determine what service is being rendered and if the service is covered or not medically necessary. See the Related Policies section.

Note: Laboratories are not allowed to obtain clinical authorization or participate in the authorization process on behalf of the ordering physician. Only the ordering physician shall be involved in the authorization, appeal or other administrative processes related to prior authorization/medical necessity.

In no circumstance shall a laboratory or a physician/provider use a representative of a laboratory or anyone with a relationship to a laboratory and/or a third party to obtain authorization on behalf of the ordering physician, to facilitate any portion of the authorization process or any subsequent appeal of a claim where the authorization process was not followed and/or a denial for clinical appropriateness was issued, including any element of the preparation of necessary documentation of clinical appropriateness. If a laboratory or a third party is found to be supporting any portion of the authorization process, BCBSRI will deem the action a violation of this policy and severe action will be taken up to and including termination from the BCBSRI provider network. If a laboratory provides a laboratory service that has not been authorized, the service will be denied as the financial liability of the participating laboratory and may not be billed to the member.

POLICY STATEMENT

Medicare Advantage Plans and Commercial Products

Effective 9/1/2025, the following test(s) may be considered medically necessary when the medical criteria above are met:

- Decipher Prostate Genomic Classifier
- Genomic Prostate Score® (GPS) Test
- Oncotype DX AR-V7 Nuclear Detect
- Prolaris

The following test(s) are not covered for Medicare Advantage Plans and not medically necessary for Commercial Products as the evidence is insufficient to determine that the technology results in an improvement in the net health outcome:

ProMark

Commercial Products

Some genetic testing services are not covered and a contract exclusion for any self-funded group that has excluded the expanded coverage of biomarker testing related to the state mandate, R.I.G.L. §27-19-81 described in the Biomarker Testing Mandate policy. For these groups, a list of which genetic testing services are covered with prior authorization, are not medically necessary or are not covered because they are a contract exclusion can be found in the Coding section of the Genetic Testing Services or Proprietary Laboratory Analyses policies. Please refer to the appropriate Benefit Booklet to determine whether the member's plan has customized benefit coverage. Please refer to the list of Related Policies for more information.

COVERAGE

Benefits may vary between groups/contracts. Please refer to the appropriate Benefit Booklet, Evidence of Coverage, or Subscriber Agreement for applicable laboratory testing and not medically necessary/not covered benefits/coverage.

BACKGROUND

Prostate cancer is the second most common noncutaneous cancer diagnosed among men in the United States. Autopsy studies in the era before the availability of prostate-specific antigen (PSA) screening have identified incidental cancerous foci in 30% of men 50 years of age, with incidence reaching 75% at age 80 years.

Localized prostate cancers may appear very similar clinically at diagnosis. However, they often exhibit diverse risk of progression that may not be captured by clinical risk categories (eg, D'Amico criteria) or prognostic tools based on clinical findings, including PSA titers, Gleason grade, or tumor stage. In studies of conservative management, the risk of localized disease progression based on prostate cancer—specific survival rates at 10 years may range from 15% to 20% to perhaps 27% at 20-year follow-up. Among older men (ages ≥ 70 years) with low-risk disease, comorbidities typically supervene as a cause of death; these men will die with prostate cancer present, rather than from cancer itself. Other very similar appearing low-risk tumors may progress unexpectedly rapidly, quickly disseminating and becoming incurable.

Risk Stratification in Newly Diagnosed Disease

In the United States, most prostate cancers are clinically localized at diagnosis due in part to the widespread use of PSA testing. Clinicopathologic characteristics are used to stratify patients by risk based on the extent of the primary tumor (T category), nearby lymph node involvement (N category), metastasis (M category), PSA level and Gleason score. The National Comprehensive Cancer Network and American Urological Association risk categories for clinically localized prostate cancer are similar, derived from the D'Amico criteria and broadly include low-, intermediate-, or high-risk as follows as well as subcategories within these groups:

• Low: T1-T2a and Gleason score ≤6/Gleason grade group 1 and PSA level ≤10 ng/mL;

- Intermediate: T2b-T2c or Gleason score 3+4=7/Gleason grade group 2 or Gleason score 4+3=7/Gleason grade group 3 or PSA level 10-20 ng/mL;
- High: T3a or Gleason score 8/Gleason grade group 4 or Gleason score 9-10/Gleason grade group 5 or PSA level >20 ng/mL.

Risk stratification is combined with patient age, life expectancy, and treatment preferences to make initial therapy decisions.

Monitoring After Prostatectomy

All normal prostate tissue and tumor tissue are theoretically removed during radical prostatectomy (RP), so the serum level of PSA should be undetectable following RP. Detectable PSA post-RP indicates residual prostate tissue and presumably persistent or recurrent disease. PSA is serially measured following RP to detect early disease recurrence. The National Comprehensive Cancer Network recommends monitoring serum PSA every 6 to 12 months for the first 5 years and annually thereafter. Many recurrences following RP can be successfully treated. The American Urological Association has recommended that biochemical recurrence be defined as a serum PSA of 0.2 ng/mL or higher, which is confirmed by the second determination with a PSA level of 0.2 ng/mL or higher.

Castration-Resistant Prostate Cancer

Androgen deprivation therapy (ADT) is generally the initial treatment for patients with advanced prostate cancer. ADT can produce tumor response and improve quality of life but most patients will eventually progress on ADT. Disease that progresses while the patient is on ADT is referred to as castration-resistant prostate cancer. After progression, continued ADT is generally used in conjunction with other treatments. Androgen pathways are important in the progression of castration-resistant prostate cancer. Several drugs have been developed that either inhibit enzymes involved in androgen production or inhibit the androgen receptor, such as abiraterone and enzalutamide. Taxane chemotherapy with docetaxel or cabazitaxel may also be used after progression. Immunotherapy (sipuleucel-T) or radium 223 are options for select men.

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). The ProMarkTM protein biomarker test (Metamark Genetics) is available under the auspices of CLIA. Laboratories that offer laboratory-developed tests must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any regulatory review of these tests.

ProMark Protein Biomarker Test

The ProMark assay includes 8 biomarkers that predict prostate pathology aggressiveness and lethal outcomes: DERL1, PDSS2, pS6, YBX1, HSPA9, FUS, SMAD4, and CUL2. The assay results are combined using predefined coefficients for each marker from a logistic regression model to calculate a risk score. The risk score is a continuous number between 0 and 1, which estimates the probability of "non–GS 6" pathology.

For individuals who have clinically localized untreated prostate cancer who receive the ProMark protein biomarker test, the evidence includes a retrospective cohort study of clinical validity using archived samples and no studies of clinical utility. Relevant outcomes include OS, disease-specific survival, QOL, and treatment-related morbidity. Current evidence does not support improved outcomes with ProMark given that only a single clinical validity study is available. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

CODING

Effective 9/1/2025, the following CPT code(s) may be medically necessary for Medicare Advantage Plans and Commercial Products when the medical criteria in the online authorization tool for participating providers is met.

Decipher Prostate Genomic Classifier, CPT 81542

- Genomic Prostate Score® (GPS) Test, CPT 0047U (Test Name and Laboratory Revised Effective 7/1/2024)
- Oncotype DX AR-V7 Nuclear Detect, CPT 81479
- Prolaris, CPT 81541

The following Unlisted CPT code requires prior authorization for Medicare Advantage Plans and Commercial Products. The code can be used for any test identified in this policy (e.g. Promark) that has not been assigned a specific CPT code.

81479 Unlisted molecular pathology procedure

RELATED POLICIES

Biomarker Testing Mandate Genetic Testing Services Proprietary Laboratory Analyses (PLA) Unlisted Procedures

PUBLISHED

Provider Update, July 2025 Provider Update, September 2024 Provider Update, November 2023 Provider Update, June 2022 Provider Update, July 2021

REFERENCES

- 1. Dall'Era MA, Cooperberg MR, Chan JM, et al. Active surveillance for early-stage prostate cancer: review of the current literature. Cancer. Apr 15 2008; 112(8): 1650-9. PMID 18306379
- 2. Bangma CH, Roemeling S, Schroder FH. Overdiagnosis and overtreatment of early detected prostate cancer. World J Urol. Mar 2007; 25(1): 3-9. PMID 17364211
- 3. Johansson JE, Andren O, Andersson SO, et al. Natural history of early, localized prostate cancer. JAMA. Jun 09 2004; 291(22): 2713-9. PMID 15187052
- 4. Ploussard G, Epstein JI, Montironi R, et al. The contemporary concept of significant versus insignificant prostate cancer. Eur Urol. Aug 2011; 60(2): 291-303. PMID 21601982
- 5. Harnden P, Naylor B, Shelley MD, et al. The clinical management of patients with a small volume of prostatic cancer on biopsy: what are the risks of progression? A systematic review and meta-analysis. Cancer. Mar 01 2008; 112(5): 971-81. PMID 18186496
- 6. Brimo F, Montironi R, Egevad L, et al. Contemporary grading for prostate cancer: implications for patient care. Eur Urol. May 2013; 63(5): 892-901. PMID 23092544
- 7. Eylert MF, Persad R. Management of prostate cancer. Br J Hosp Med (Lond). Feb 2012; 73(2): 95-9. PMID 22504752
- 8. Eastham JA, Kattan MW, Fearn P, et al. Local progression among men with conservatively treated localized prostate cancer: results from the Transatlantic Prostate Group. Eur Urol. Feb 2008; 53(2): 347-54. PMID 17544572
- 9. Bill-Axelson A, Holmberg L, Ruutu M, et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. May 12 2005; 352(19): 1977-84. PMID 15888698
- 10. Thompson IM, Goodman PJ, Tangen CM, et al. Long-term survival of participants in the prostate cancer prevention trial. N Engl J Med. Aug 15 2013; 369(7): 603-10. PMID 23944298
- 11. Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. May 04 2005; 293(17): 2095-101. PMID 15870412
- 12. National Comprehensive Cancer Network (NCCN). NCCN Clincal Practice Guidelines in Oncology: Prostate Cancer. Version 1.2023. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed November 2, 2022.
- 13. American Urological Association (AUA). Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. 2017; http://www.auanet.org/guidelines/clinically-localized-prostate-cancer-new-(aua/astro/suo-guideline-2017). Accessed December 3, 2022.

- 14. Thompson IM, Valicenti RK, Albertsen P, et al. Adjuvant and salvage radiotherapy after prostatectomy: AUA/ASTRO Guideline. J Urol. Aug 2013; 190(2): 441-9. PMID 23707439
- 15. Food and Drug Administration (FDA). The Public Health Evidence for FDA Oversight of Laboratory Developed Tests: 20 Case Studies. 2015; http://www.nila-usa.org/images/nila/The%20Public%20Health%20Case%20for%20FDA%20Oversight%20of%20LDT s%20110915(2)_508ed%20(1).pdf. Accessed November 2, 2022.
- 16. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Gene Expression Analysis for Prostate Cancer Management. TEC Assessments. 2014;Volume 28:Tab 11.
- 17. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Gene Expression Profiling for Prostate Cancer Management. TEC Assessments. 2015;Volume 29:Tab 9.
- 18. Borley N, Feneley MR. Prostate cancer: diagnosis and staging. Asian J Androl. Jan 2009; 11(1): 74-80. PMID 19050692
- 19. Freedland SJ. Screening, risk assessment, and the approach to therapy in patients with prostate cancer. Cancer. Mar 15 2011; 117(6): 1123-35. PMID 20960523
- 20. Whitson JM, Carroll PR. Active surveillance for early-stage prostate cancer: defining the triggers for intervention. J Clin Oncol. Jun 10 2010; 28(17): 2807-9. PMID 20439633
- 21. Albertsen PC. Treatment of localized prostate cancer: when is active surveillance appropriate?. Nat Rev Clin Oncol. Jul 2010; 7(7): 394-400. PMID 20440282
- 22. Ip S, Dahabreh IJ, Chung M, et al. An evidence review of active surveillance in men with localized prostate cancer. Evid Rep Technol Assess (Full Rep). Dec 2011; (204): 1-341. PMID 23126653
- 23. Nam RK, Cheung P, Herschorn S, et al. Incidence of complications other than urinary incontinence or erectile dysfunction after radical prostatectomy or radiotherapy for prostate cancer: a population-based cohort study. Lancet Oncol. Feb 2014; 15(2): 223-31. PMID 24440474
- 24. Hamdy FC, Donovan JL, Lane JA, et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med. Oct 13 2016; 375(15): 1415-1424. PMID 27626136
- 25. Tosoian JJ, Mamawala M, Epstein JI, et al. Intermediate and Longer-Term Outcomes From a Prospective Active-Surveillance Program for Favorable-Risk Prostate Cancer. J Clin Oncol. Oct 20 2015; 33(30): 3379-85. PMID 26324359
- 26. Klotz L, Vesprini D, Sethukavalan P, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol. Jan 20 2015; 33(3): 272-7. PMID 25512465
- 27. Wilt TJ, Brawer MK, Jones KM, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. Jul 19 2012; 367(3): 203-13. PMID 22808955
- 28. Wilt TJ, Jones KM, Barry MJ, et al. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med. Jul 13 2017; 377(2): 132-142. PMID 28700844
- 29. van den Bergh RC, Korfage IJ, Roobol MJ, et al. Sexual function with localized prostate cancer: active surveillance vs radical therapy. BJU Int. Oct 2012; 110(7): 1032-9. PMID 22260273
- 30. Johansson E, Steineck G, Holmberg L, et al. Long-term quality-of-life outcomes after radical prostatectomy or watchful waiting: the Scandinavian Prostate Cancer Group-4 randomised trial. Lancet Oncol. Sep 2011; 12(9): 891-9. PMID 21821474
- 31. Wu CL, Schroeder BE, Ma XJ, et al. Development and validation of a 32-gene prognostic index for prostate cancer progression. Proc Natl Acad Sci U S A. Apr 09 2013; 110(15): 6121-6. PMID 23533275
- 32. Spans L, Clinckemalie L, Helsen C, et al. The genomic landscape of prostate cancer. Int J Mol Sci. May 24 2013; 14(6): 10822-51. PMID 23708091
- 33. Schoenborn JR, Nelson P, Fang M. Genomic profiling defines subtypes of prostate cancer with the potential for therapeutic stratification. Clin Cancer Res. Aug 01 2013; 19(15): 4058-66. PMID 23704282
- 34. Huang J, Wang JK, Sun Y. Molecular pathology of prostate cancer revealed by next-generation sequencing: opportunities for genome-based personalized therapy. Curr Opin Urol. May 2013; 23(3): 189-93. PMID 23385974
- 35. Yu YP, Song C, Tseng G, et al. Genome abnormalities precede prostate cancer and predict clinical relapse. Am J Pathol. Jun 2012; 180(6): 2240-8. PMID 22569189
- 36. Agell L, Hernandez S, Nonell L, et al. A 12-gene expression signature is associated with aggressive histological in prostate cancer: SEC14L1 and TCEB1 genes are potential markers of progression. Am J Pathol. Nov 2012; 181(5): 1585-94. PMID 23083832

- 37. Thompson I, Thrasher JB, Aus G, et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol. Jun 2007; 177(6): 2106-31. PMID 17509297
- 38. Kattan MW, Eastham JA, Wheeler TM, et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol. Nov 2003; 170(5): 1792-7. PMID 14532778
- 39. Cooperberg MR, Freedland SJ, Pasta DJ, et al. Multiinstitutional validation of the UCSF cancer of the prostate risk assessment for prediction of recurrence after radical prostatectomy. Cancer. Nov 15 2006; 107(10): 2384-91. PMID 17039503
- 40. Chen RC, Chang P, Vetter RJ, et al. Recommended patient-reported core set of symptoms to measure in prostate cancer treatment trials. J Natl Cancer Inst. Jul 2014; 106(7). PMID 25006192
- 41. Cuzick J, Berney DM, Fisher G, et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer. Mar 13 2012; 106(6): 1095-9. PMID 22361632
- 42. Cuzick J, Stone S, Fisher G, et al. Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br J Cancer. Jul 28 2015; 113(3): 382-9. PMID 26103570
- 43. Lin DW, Crawford ED, Keane T, et al. Identification of men with low-risk biopsy-confirmed prostate cancer as candidates for active surveillance. Urol Oncol. Jun 2018; 36(6): 310.e7-310.e13. PMID 29655620
- 44. Montironi R, Mazzuccheli R, Scarpelli M, et al. Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: contemporary approach, current clinical significance and sources of pathology discrepancies. BJU Int. Jun 2005; 95(8): 1146-52. PMID 15877724
- 45. Sommariva S, Tarricone R, Lazzeri M, et al. Prognostic Value of the Cell Cycle Progression Score in Patients with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol. Jan 2016; 69(1): 107-15. PMID 25481455
- 46. Crawford ED, Scholz MC, Kar AJ, et al. Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin. Jun 2014; 30(6): 1025-31. PMID 24576172
- 47. Shore N, Concepcion R, Saltzstein D, et al. Clinical utility of a biopsy-based cell cycle gene expression assay in localized prostate cancer. Curr Med Res Opin. Apr 2014; 30(4): 547-53. PMID 24320750
- 48. Shore ND, Kella N, Moran B, et al. Impact of the Cell Cycle Progression Test on Physician and Patient Treatment Selection for Localized Prostate Cancer. J Urol. Mar 2016; 195(3): 612-8. PMID 26403586
- 49. Klein EA, Cooperberg MR, Magi-Galluzzi C, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. Sep 2014; 66(3): 550-60. PMID 24836057
- 50. Cooperberg MR, Simko JP, Cowan JE, et al. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol. Apr 10 2013; 31(11): 1428-34. PMID 23460710
- 51. McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor marker prognostic studies. J Clin Oncol. Dec 20 2005; 23(36): 9067-72. PMID 16172462
- 52. Epstein JI, Allsbrook WC, Amin MB, et al. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol. Sep 2005; 29(9): 1228-42. PMID 16096414
- 53. Eure G, Germany R, Given R, et al. Use of a 17-Gene Prognostic Assay in Contemporary Urologic Practice: Results of an Interim Analysis in an Observational Cohort. Urology. Sep 2017; 107: 67-75. PMID 28454985
- 54. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. Nov-Dec 2006; 26(6): 565-74. PMID 17099194
- 55. Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. Jun 16 2009; 101(12): 878-87. PMID 19509351
- 56. Berlin A, Murgic J, Hosni A, et al. Genomic Classifier for Guiding Treatment of Intermediate-Risk Prostate Cancers to Dose-Escalated Image Guided Radiation Therapy Without Hormone Therapy. Int J Radiat Oncol Biol Phys. Jan 01 2019; 103(1): 84-91. PMID 30170099

- 57. Nguyen PL, Shin H, Yousefi K, et al. Impact of a Genomic Classifier of Metastatic Risk on Postprostatectomy Treatment Recommendations by Radiation Oncologists and Urologists. Urology. Jul 2015; 86(1): 35-40. PMID 26142578
- 58. Blume-Jensen P, Berman DM, Rimm DL, et al. Development and clinical validation of an in situ biopsybased multimarker assay for risk stratification in prostate cancer. Clin Cancer Res. Jun 01 2015; 21(11): 2591-600. PMID 25733599
- 59. Fossati N, Karnes RJ, Boorjian SA, et al. Long-term Impact of Adjuvant Versus Early Salvage Radiation Therapy in pT3N0 Prostate Cancer Patients Treated with Radical Prostatectomy: Results from a Multi-institutional Series. Eur Urol. Jun 2017; 71(6): 886-893. PMID 27484843
- 60. Hwang WL, Tendulkar RD, Niemierko A, et al. Comparison Between Adjuvant and Early-Salvage Postprostatectomy Radiotherapy for Prostate Cancer With Adverse Pathological Features. JAMA Oncol. May 10 2018; 4(5): e175230. PMID 29372236
- 61. Buscariollo DL, Drumm M, Niemierko A, et al. Long-term results of adjuvant versus early salvage postprostatectomy radiation: A large single-institutional experience. Pract Radiat Oncol. Mar 2017; 7(2): e125-e133. PMID 28274403
- 62. Freedland SJ, Rumble RB, Finelli A, et al. Adjuvant and salvage radiotherapy after prostatectomy: American Society of Clinical Oncology clinical practice guideline endorsement. J Clin Oncol. Dec 01 2014; 32(34): 3892-8. PMID 25366677
- 63. Stephenson AJ, Scardino PT, Kattan MW, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. May 20 2007; 25(15): 2035-41. PMID 17513807
- 64. Stephenson AJ, Scardino PT, Eastham JA, et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol. Oct 01 2005; 23(28): 7005-12. PMID 16192588
- 65. Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer. Nov 15 2011; 117(22): 5039-46. PMID 21647869
- 66. Cuzick J, Swanson GP, Fisher G, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. Mar 2011; 12(3): 245-55. PMID 21310658
- 67. Bishoff JT, Freedland SJ, Gerber L, et al. Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol. Aug 2014; 192(2): 409-14. PMID 24508632
- 68. Koch MO, Cho JS, Kaimakliotis HZ, et al. Use of the cell cycle progression (CCP) score for predicting systemic disease and response to radiation of biochemical recurrence. Cancer Biomark. Jun 07 2016; 17(1): 83-8. PMID 27314296
- 69. Freedland SJ, Gerber L, Reid J, et al. Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys. Aug 01 2013; 86(5): 848-53. PMID 23755923
- 70. Klein EA, Yousefi K, Haddad Z, et al. A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol. Apr 2015; 67(4): 778-86. PMID 25466945
- 71. Den RB, Yousefi K, Trabulsi EJ, et al. Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol. Mar 10 2015; 33(8): 944-51. PMID 25667284
- 72. Den RB, Feng FY, Showalter TN, et al. Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys. Aug 01 2014; 89(5): 1038-1046. PMID 25035207
- 73. Cooperberg MR, Davicioni E, Crisan A, et al. Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur Urol. Feb 2015; 67(2): 326-33. PMID 24998118
- 74. Ross AE, Feng FY, Ghadessi M, et al. A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy. Prostate Cancer Prostatic Dis. Mar 2014; 17(1): 64-9. PMID 24145624

- 75. Karnes RJ, Bergstralh EJ, Davicioni E, et al. Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk patient population. J Urol. Dec 2013; 190(6): 2047-53. PMID 23770138
- 76. Erho N, Crisan A, Vergara IA, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS One. 2013; 8(6): e66855. PMID 23826159
- 77. Ross AE, Johnson MH, Yousefi K, et al. Tissue-based Genomics Augments Post-prostatectomy Risk Stratification in a Natural History Cohort of Intermediate- and High-Risk Men. Eur Urol. Jan 2016; 69(1): 157-65. PMID 26058959
- 78. Freedland SJ, Choeurng V, Howard L, et al. Utilization of a Genomic Classifier for Prediction of Metastasis Following Salvage Radiation Therapy after Radical Prostatectomy. Eur Urol. Oct 2016; 70(4): 588-596. PMID 26806658
- 79. Glass AG, Leo MC, Haddad Z, et al. Validation of a Genomic Classifier for Predicting Post-Prostatectomy Recurrence in a Community Based Health Care Setting. J Urol. Jun 2016; 195(6): 1748-53. PMID 26626216
- 80. Spratt DE, Dai DLY, Den RB, et al. Performance of a Prostate Cancer Genomic Classifier in Predicting Metastasis in Men with Prostate-specific Antigen Persistence Postprostatectomy. Eur Urol. Jul 2018; 74(1): 107-114. PMID 29233664
- 81. Karnes RJ, Choeurng V, Ross AE, et al. Validation of a Genomic Risk Classifier to Predict Prostate Cancer-specific Mortality in Men with Adverse Pathologic Features. Eur Urol. Feb 2018; 73(2): 168-175. PMID 28400167
- 82. Ross AE, Den RB, Yousefi K, et al. Efficacy of post-operative radiation in a prostatectomy cohort adjusted for clinical and genomic risk. Prostate Cancer Prostatic Dis. Sep 2016; 19(3): 277-82. PMID 27136742
- 83. Lobo JM, Dicker AP, Buerki C, et al. Evaluating the clinical impact of a genomic classifier in prostate cancer using individualized decision analysis. PLoS One. 2015; 10(3): e0116866. PMID 25837660
- 84. West TA, Kiely BE, Stockler MR. Estimating scenarios for survival time in men starting systemic therapies for castration-resistant prostate cancer: a systematic review of randomised trials. Eur J Cancer. Jul 2014; 50(11): 1916-24. PMID 24825113
- 85. Scher HI, Graf RP, Schreiber NA, et al. Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer. Eur Urol. Jun 2017; 71(6): 874-882. PMID 27979426
- 86. Armstrong AJ, Halabi S, Luo J, et al. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY Study. J Clin Oncol. May 01 2019; 37(13): 1120-1129. PMID 30865549
- 87. Sanda MG, Cadeddu JA, Kirkby E, et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J Urol. Mar 2018; 199(3): 683-690. PMID 29203269
- 88. Sanda MG, Cadeddu JA, Kirkby E, et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part II: Recommended Approaches and Details of Specific Care Options. J Urol. Apr 2018; 199(4): 990-997. PMID 29331546
- 89. Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. Sep 11 2014; 371(11): 1028-38. PMID 25184630
- 90. Scher HI, Lu D, Schreiber NA, et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. Nov 01 2016; 2(11): 1441-1449. PMID 27262168
- 91. Scher HI, Graf RP, Schreiber NA, et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol. Sep 01 2018; 4(9): 1179-1186. PMID 29955787
- 92. Eggener SE, Rumble RB, Armstrong AJ, et al. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. J Clin Oncol. May 01 2020; 38(13): 1474-1494. PMID 31829902
- 93. Lowrance WT, Murad MH, Oh WK, et al. Castration-Resistant Prostate Cancer: AUA Guideline Amendment 2018. J Urol. Dec 2018; 200(6): 1264-1272. PMID 30086276
- 94. National Institute for Health and Care Excellence (NICE). Prostate cancer: diagnosis and management [NG131]. 2019; https://www.nice.org.uk/guidance/ng131. Accessed November 2, 2022.

- CLICK THE ENVELOPE ICON BELOW TO SUBMIT COMMENTS

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice. Blue Cross & Blue Shield of Rhode Island is an independent licensee of the Blue Cross and Blue Shield Association.