OVERVIEW
Cone beam computed tomography (or CBCT) is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone. This policy documents that CBCT is not appropriate when used for medical diagnosis or surgical indications.

PRIOR AUTHORIZATION
Not Applicable.

POLICY STATEMENT
BlueCHiP for Medicare and Commercial:
Cone beam CT scan is considered not medically necessary for medical or surgical indications when rendered by an eligible provider. The current literature does not define the clinical conditions in which the cone beam imaging methodology is superior to or equal to CT or other imaging techniques with respect to medical decision making or use in therapeutic procedures.

Cone Beam Computed Tomography scan for dental purposes is considered a contract exclusion and is therefore non-covered.

MEDICAL CRITERIA
None

BACKGROUND
A Computed Tomography (CT) scan is a diagnostic imaging method in which a computer is used to generate a three-dimensional image of an object using a series of two-dimensional X-ray image slices taken around a single axis of rotation. Cone beam refers to the type of X-Ray projection which allows users to image a small well defined volume such as the lower face and mouth at a low radiation dosage. The current literature does not define the clinical conditions in which the cone beam imaging methodology is superior to or equal to CT or other imaging techniques with respect to medical decision making or use in therapeutic procedures.

COVERAGE
Benefits may vary between groups and contracts. Please refer to the appropriate Evidence of Coverage or Subscriber Agreement for the applicable Non-covered and Not Medically Necessary services coverage.

CODING
Blue Chip for Medicare and Commercial:
There are no specific codes that address the cone-beam technique, please submit claims with the following unlisted CPT, following the unlisted process 76497

RELATED POLICIES
Not applicable
REFERENCES
1. Comparison of the accuracy of cone beam computed tomography and medical computed tomography: implications for clinical diagnostics with guided surgery.