Medical Coverage Policy

Cytochrome p450 Genotyping

☑ Device/Equipment ☐ Drug ☐ Medical ☐ Surgery ☒ Test ☐ Other

Effective Date: 5/18/2010 Policy Last Updated: 5/3/2011

☑ Prospective review is recommended/required. Please check the member agreement for preauthorization guidelines.

☐ Prospective review is not required.

Description:

Drug efficacy and toxicity vary substantially across individuals. Because drugs and doses are typically adjusted, if needed, by trial and error, clinical consequences may include a prolonged time to optimal therapy. In some cases, serious adverse events may result.

Various factors may influence the variability of drug effects, including age, liver function, concomitant diseases, nutrition, smoking, and drug-drug interactions. Inherited (germline) DNA sequence variation (polymorphisms) in genes coding for drug metabolizing enzymes, drug receptors, drug transporters, and molecules involved in signal transduction pathways also may have major effects on the activity of those molecules and thus on the efficacy or toxicity of a drug.

Pharmacogenomics is the study of how an individual's genetic inheritance affects the body's response to drugs. It may be possible to predict therapeutic failures or severe adverse drug reactions in individual patients by testing for important DNA polymorphisms (genotyping) in genes related to the metabolic pathway (pharmacokinetics) or signal transduction pathway (pharmacodynamics) of the drug. Potentially, test results could be used to optimize drug choice and/or dose for more effective therapy, avoid serious adverse effects, and decrease medical costs.

The cytochrome p450 (CYP450) family is a major subset of all drug-metabolizing enzymes; several CYP450 enzymes are involved in the metabolism of a significant proportion of currently administered drugs. Some CYP450 enzyme genes are highly polymorphic, resulting in some enzyme variants that have variable metabolic capacities among individuals, and some with little to no impact on activity. Thus, CYP450 enzyme variants constitute one important group of drug-gene interactions influencing the variability of effect of some CYP450 metabolized drugs.

Individuals with 2 copies (alleles) of the most common (wild type) DNA sequence of a particular CYP450 enzyme gene resulting in an active molecule are termed extensive metabolizers (EM; normal). Poor metabolizers (PM) lack active enzyme gene alleles, and intermediate metabolizers (IM), who have one active and one inactive enzyme gene allele, may experience to a lesser degree some of the consequences of poor metabolizers. Ultrarapid metabolizers (UM) are individuals with more than 2 alleles of an active enzyme gene. There is pronounced ethnic variability in the population distribution of metabolizer types for a given CYP enzyme.

Ultrarapid metabolizers administered an active drug may not reach therapeutic concentrations at usual, recommended doses of active drugs, while poor metabolizers may suffer more adverse events at usual doses due to reduced metabolism and increased concentrations. Conversely, for administered prodrugs that must be converted by CYP450 enzymes into active metabolites, ultrarapid metabolizers may suffer adverse effects and poor metabolizers may not respond.
However, it is very important to realize that many drugs are metabolized to varying degrees by more than one enzyme, either within or outside of the CYP450 superfamily. In addition, interaction between different metabolizing genes, interaction of genes and environment, and interactions among different non-genetic factors also influence CYP450-specific metabolizing functions. Thus, identification of a variant in a single gene in the metabolic pathway may be insufficient in all but a small proportion of drugs to explain inter-individual differences in metabolism and consequent efficacy or toxicity.

Genetically determined variability in drug response has been traditionally addressed using a trial and error approach to prescribing and dosing, along with therapeutic drug monitoring (TDM) for drugs with a very narrow therapeutic range and/or potential serious adverse effects outside that range. However, TDM is not available for all drugs of interest, and a cautious trial and error approach can lengthen the time to achieving an effective dose.

CYP450 enzyme phenotyping (identifying metabolizer status) can be accomplished by administering a test enzyme substrate to a patient and monitoring parent substrate and metabolite concentrations over time (e.g., in urine). However, testing and interpretation are time-consuming and inconvenient; as a result, phenotyping is seldom performed.

The clinical utility of CYP450 genotyping, i.e., the likelihood that genotyping will significantly improve drug choice/dosing and consequent patient outcomes, is favored when the drug under consideration has a narrow therapeutic dose range (window), when the consequences of treatment failure are severe, and/or when serious adverse reactions are more likely in patients with gene sequence variants. Under these circumstances, genotyping may direct early selection of the most effective drug or dose, and/or avoid drugs or doses likely to cause toxicity. For example, warfarin, some neuroleptics, and tricyclic antidepressants have narrow therapeutic windows and can cause serious adverse events when concentrations exceed certain limits, resulting in cautious dosing protocols. Yet, the potential severity of the disease condition may call for immediate and sufficient therapy; genotyping might speed the process of achieving a therapeutic dose and avoiding significant adverse events.

Diagnostic genotyping tests for certain CYP450 enzymes are now available. Some tests are offered as in-house laboratory-developed test services, which do not require U.S. Food and Drug Administration (FDA) approval but which must meet CLIA quality standards for high complexity testing. The AmpliChip® (Roche Molecular Systems, Inc.) is the only FDA-cleared test for CYP450 genotyping. The AmpliChip® is a microarray consisting of many DNA sequences complementary to 2 CYP450 genes and applied in microscopic quantities at ordered locations on a solid surface (chip). The AmpliChip® tests the DNA from a patient’s white blood cells collected in a standard anticoagulated blood sample for 29 polymorphisms and mutations for the CYP2D6 gene and 2 polymorphisms for the CYP2C19 gene. CYP2D6 metabolizes approximately 25% of all clinically used medications (e.g., dextromethorphan, beta-blockers, antarrhythmics, antidepressants, and morphine derivatives), including many of the most prescribed drugs. CYP2C19 metabolizes several important types of drugs, including proton-pump inhibitors, diazepam, propranolol, imipramine, and amitriptyline. FDA cleared the test “based on results of a study conducted by the manufacturers of hundreds of DNA samples as well as on a broad range of supporting peer-reviewed literature.” According to FDA labeling, “Information about CYP2D6 genotype may be used as an aid to clinicians in determining therapeutic strategy and treatment doses for therapeutics that are metabolized by the CYP2D6 product.”

Medical Criteria:

CYP450 phenotyping for CYP2C19 *2 and *3 alleles may be considered medically necessary in patients with cardiovascular disease undergoing treatment with clopidogrel (Plavix) in order to identify those who are poor metabolizers of the drug (patients with CYP2C19*2/2,*3/3, and *2/3 genotypes) and who are therefore likely to exhibit poor response to the drug.

For all other uses, genotyping to determine specific cytochrome p450 (CYP450) genetic polymorphisms for the purpose of aiding in the choice of drug or dose to increase efficacy and/or avoid toxicity is considered not medically necessary.
Policy:

Cytochrome p450 Genotyping is a covered service when the above criteria has been met. Prior authorization is required for BlueCHiP for Medicare and recommended for all other lines of business.

Coverage:

Benefits may vary between groups/contracts. Please refer to the appropriate Evidence of Coverage, Subscriber Agreement, or Benefit Booklet for laboratory testing/not medically necessary services.

Coding:

The following codes are not medically necessary:

81225 (Effective 1/1/12)
81226 (Effective 1/1/12)

CPT codes for array-based evaluation of multiple molecular markers:

88384
88385
88386

When less than 11 probes are evaluated, CPT codes 83890-83914 are used.

The CPT genetic modifier specific to CYP2 genes should be used:

-9B CYP2 genes, commonly called cytochrome p450 (drug metabolism)

Also Known as:

Not applicable.

Related Topics:

Not applicable.

Published:

Provider Update, August 2010
Provider Update, July 2011

References:

This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member’s subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice.