Medical Coverage Policy

Genetic Testing: Congenital Long QT Syndrome

☐ Device/Equipment  ☐ Drug  ☐ Medical  ☐ Surgery  ☒ Test  ☐ Other

Effective Date: 2/15/2011  Policy Last Updated: 2/21/2012

☒ Prospective review is recommended/required. Please check the member agreement for preauthorization guidelines.

☐ Prospective review is not required.

Description:

Congenital long QT syndrome (LQTS) is an inherited disorder characterized by the lengthening of the repolarization phase of the ventricular action potential, increasing the risk for arrhythmic events, such as torsades de pointes, which may in turn result in syncope and sudden cardiac death. Management has focused on the use of beta blockers as first-line treatment, with pacemakers or implantable cardiac defibrillators (ICD) as second-line therapy.

Congenital LQTS usually manifests before the age of 40 years and may be suspected when there is a history of seizure, syncope, or sudden death in a child or young adult; this history may prompt additional testing in family members. It is estimated that more than one half of the 8,000 sudden unexpected deaths in children may be related to LQTS. The mortality rate of untreated patients with LQTS is estimated at 1–2% per year, although this figure will vary with the genotype, discussed further here. Frequently, syncope or sudden death occurs during physical exertion or emotional excitement, and thus LQTS has received publicity regarding evaluation of adolescents for participation in sports. In addition, LQTS may be considered when a long QT interval is incidentally observed on an electrocardiogram (EKG). Diagnostic criteria for LQTS have been established, which focus on EKG findings and clinical and family history (i.e., Schwartz criteria, see following section, “Clinical Diagnosis”). However, measurement of the QT interval is not well standardized, and in some cases, patients may be considered borderline cases.

In recent years, LQTS has been characterized as an “ion channel disease,” with abnormalities in the sodium and potassium channels that control the excitability of the cardiac myocytes. A genetic basis for LQTS has also emerged, with 7 different variants recognized, each corresponding to mutations in different genes as indicated here. In addition, typical ST-T-wave patterns are also suggestive of specific subtypes.

LQT1 associated with mutations in the gene KNQ1 located on chromosome 11. LQT1 is responsible for approximately 50% of all LQTS, and arrhythmic events prompted by exercise may occur most commonly in this subtype. Therefore, patients with LQT1 may be advised to minimize exercise.

LQT2 associated with mutations in the gene KCNH2 located on chromosome 7 and is seen in 45% of patients with LQTS. Arrhythmic events appear to be precipitated by auditory stimuli, and these patients may be advised to avoid clock alarms, etc.

LQT3 associated with mutations in the gene SCN5A located on chromosome 3. This subtype is seen in 3–4% of patients with LQTS. In this subtype, the majority of cardiac events occur during sleep. LQT3 variant is also known as the Brugada syndrome.

LQT 4-7 involve KCN genes located on chromosomes 21 and 17. These variants each account for less than 1% of LQTS.
**Clinical Diagnosis**

The Schwartz criteria are commonly used as a diagnostic scoring system for LQTS. The most recent version of this scoring system is shown Table 1. A score of 4 or greater indicates a high probability that LQTS is present; a score of 2–3, an intermediate probability; and a score of 1 or less indicates a low probability of the disorder. Prior to the availability of genetic testing, it was not possible to test the sensitivity and specificity of this scoring system; therefore, the accuracy of this scoring system is ill-defined.

### Diagnostic Scoring System for LQTS

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Electrocardiographic Findings</strong></td>
<td></td>
</tr>
<tr>
<td>*QTc &gt; 480 msec</td>
<td>3</td>
</tr>
<tr>
<td>*QTc 460-470 msec</td>
<td>2</td>
</tr>
<tr>
<td>*QTc &lt; 450 msec</td>
<td>1</td>
</tr>
<tr>
<td>History of torsades de pointes</td>
<td>2</td>
</tr>
<tr>
<td>T-wave alternans</td>
<td>1</td>
</tr>
<tr>
<td>Notched T-waves in three leads</td>
<td>1</td>
</tr>
<tr>
<td>Low heart rate for age</td>
<td>0.5</td>
</tr>
<tr>
<td><strong>Clinical History</strong></td>
<td></td>
</tr>
<tr>
<td>*Syncope brought on by stress</td>
<td>2</td>
</tr>
<tr>
<td>*Syncope without stress</td>
<td>1</td>
</tr>
<tr>
<td>*Congenital deafness</td>
<td>0.5</td>
</tr>
<tr>
<td><strong>Family History</strong></td>
<td></td>
</tr>
<tr>
<td>*Family members with definite LQTS</td>
<td>1</td>
</tr>
<tr>
<td>*Unexplained sudden death in immediate family members younger than 30 years of age</td>
<td>0.5</td>
</tr>
</tbody>
</table>

### Genetic Testing

The Familion® test describes the analysis of the genes responsible for subtypes LQT 1-5. The test is offered in a variety of ways. For example, if a family member has been diagnosed with LQTS based on clinical characteristics, complete analysis of all 5 genes can be performed to both identify the specific mutation and identify the subtype of LQTS. If a mutation is identified, then additional family members can undergo a focused genetic analysis for the identified mutation. If a specific type of LQTS is suspected based on the EKG abnormalities, genetic testing can focus on the individual gene.

All of the LQTS genes are large, and genetic testing has revealed multiple different mutations along their length. The pathophysiologic significance of each of the discrete mutations is an important part of the interpretation of genetic analysis. PGxHealth (New Haven, CT), the laboratory offering the Familion test, compares the results to the PGxHealth Cardiac Ion Channel Variant Database, which includes data from more than 750 individuals of diverse ethnic backgrounds. Therefore, the chance that a specific mutation is pathophysiologically significant is increased if it is the same mutation as that reported in several other cases of known LQTS. However, there may be many instances when the detected mutations are of unknown significance. Variants are placed into four classes, based on the probability that the variant identified represents an actual deleterious LQTS mutation:

- **Class I** – Deleterious and probable deleterious mutations. These are either mutations that have previously been identified (deleterious mutations), represent a major change in the protein, or cause an amino acid substitution in a critical region of the protein(s) (probable deleterious mutations).
- **Class II** – Possible deleterious mutations. These variants encode changes to protein(s) but occur in regions that are not considered critical. Approximately 5% of patients without LQTS will exhibit mutations in this category.
Class III – Variants not generally expected to be deleterious. These variants encode modified protein(s); however, these are considered more likely to represent benign polymorphisms. Approximately 90% of patients without LQTS will have one or more of these variants; therefore patients with only class III variants are considered ‘negative.’

Class IV – Non-protein-altering variants. These are not considered to have clinical significance and are not reported in the results of the Familion® test.

The absence of a mutation does not imply the absence of LQTS; it is estimated that mutations are only identified in 60–70% of patients with a clinical diagnosis of LQTS.\(^7\) For these reasons, the most informative result of testing would probably occur when a family member undergoes genetic testing for a specific genetic mutation that has been identified in symptomatic relatives known to have LQTS. Interpretation of the results will likely be improved as the database grows. Other laboratories have investigated different testing strategies. For example, Napolitano and colleagues propose a three-tiered approach, first testing for a core group of 64 codons that have a high incidence of mutations, followed by additional testing of less frequent mutations.\(^8\)

Another factor complicating interpretation of the genetic analysis is the penetrance of a given mutation or the presence of multiple phenotypic expressions. For example, approximately 50% of carriers of mutation never have any symptoms. There is variable penetrance for the LQTS, and penetrance may differ for the various subtypes. While linkage studies in the past indicated that penetrance was 90% or greater, more recent analysis by molecular genetics has challenged this number,\(^9\) and suggested that penetrance may be as low as 25% for some families.

**Medical criteria:**

Genetic testing in patients with suspected congenital long QT syndrome may be considered **medically necessary** for the following indications:

1. Individuals who meet the clinical criteria for LQTS with a Schwartz score above 4; **OR**
2. Individuals who do not meet the clinical criteria for LQTS (i.e., those with a Schwartz score less than 4), but who have:
   a. a close relative (i.e., first-, second-, or third-degree relative) with a known LQTS mutation; **OR**
   b. a close relative diagnosed with LQTS by clinical means whose genetic status is unavailable; **OR**
   c. signs and/or symptoms indicating a moderate-to-high pretest probability* of LQTS.

* Determining the pretest probability of LQTS is not standardized. An example of a patient with a moderate-to-high pretest probability of LQTS is a patient with a Schwartz score of 2–3.

Genetic testing for LQTS to determine prognosis and/or direct therapy in patients with known LQTS is considered **not medically necessary.**

**Policy:**

Genetic testing in patients with suspected congenital long QT syndrome is considered **medically necessary** for patients who meet the above-noted medical criteria.

**Prospective medical review is required for BlueCHiP for Medicare and recommended for all other product lines.**

**Coverage:**

Medicare excludes all screening (not just genetic screening) with certain statutory exceptions. Blue CHiP for Medicare provides no additional benefits for genetic screening. **Only** if the patient exhibits signs or symptoms of the disease, would the test not be considered screening.

Benefits may vary between groups/contracts. Please refer to the Evidence of Coverage, Subscriber Agreement, or Benefit Booklet for applicable genetic testing coverage.
Coding:
81280
81281
81282

S3860  (code deleted effective April 1, 2012)
S3861
S3862  (code deleted effective April 1, 2012)

Also known as:
Not applicable

Related topics:
Genetic testing and counseling

Published:
Provider Update, April 2011
Provider Update, May 2012

Public Policy Description

References:


This medical policy is made available to you for informational purposes only. It is not a guarantee of payment or a substitute for your medical judgment in the treatment of your patients. Benefits and eligibility are determined by the member's subscriber agreement or member certificate and/or the employer agreement, and those documents will supersede the provisions of this medical policy. For information on member-specific benefits, call the provider call center. If you provide services to a member which are determined to not be medically necessary (or in some cases medically necessary services which are non-covered benefits), you may not charge the member for the services unless you have informed the member and they have agreed in writing in advance to continue with the treatment at their own expense. Please refer to your participation...
agreement(s) for the applicable provisions. This policy is current at the time of publication; however, medical practices, technology, and knowledge are constantly changing. BCBSRI reserves the right to review and revise this policy for any reason and at any time, with or without notice.